On linear quadratic regulator for the heat equation with general boundary conditions (2024)

Zhexian Li, Athanassios S. Fokas, Ketan SavlaZ. Li and K. Savla are with the Sonny Astani Department of Civil and Environmental Engineering, Los Angeles, CA. {zhexianl,ksavla}@usc.edu. A. S. Fokas is with the Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA, and Mathematics Research Center, Academy of Athens, Greece.K. Savla has financial interest in Xtelligent, Inc.

Abstract

We consider the linear quadratic regulator of the heat equation on a finite interval.Previous frequency-domain methods for this problem rely on discrete Fourier transform and require symmetric boundary conditions.We use the Fokas method to derive the optimal control law for general Dirichlet and Neumann boundary conditions.The Fokas method uses the continuous Fourier transform restricted to the bounded spatial domain, with the frequency domain extended from the real line to the complex plane.This extension, together with results from complex analysis, allows us to eliminate the dependence of the optimal control on the unknown boundary values.As a result, we derive an integral representation of the control similar to the inverse Fourier transform.This representation contains integrals along complex contours and only depends on known initial and boundary conditions.We also show that for the hom*ogeneous Dirichlet boundary value problem, the integral representation recovers an existing series representation of the optimal control.Moreover, the integral representation exhibits numerical advantages compared to the traditional series representation.

I Introduction

Following the seminal paper [1], there has been a great interest in optimal control of spatially invariant systems using frequency-domain methods, e.g., see [2, 3].Spatially invariant systems are defined without boundaries, while most real-world systems are defined on finite spatial domains with boundary conditions.Although spatially invariant systems can be seen as approximations of large-scale but finite-extent systems, e.g., in [4], the effect of boundary conditions is not considered in this approximation.

Only a few studies target finite-extent systems with boundary conditions; see [5, 6].Both studies assumed symmetric boundary conditions and approached the problem by embedding finite-extent systems into equivalent spatially invariant systems.The embedding technique is motivated by the method of images that is used to solve boundary value problems for linear partial differential equations (PDEs) with some symmetry properties.Hence, their methods are also limited to certain symmetric boundary conditions.Although the control of finite systems with general boundary conditions is still quite open, studies have discussed potential extensions to estimation problem [7].

Recently, a unified approach, also known as the Fokas method, has been developed to provide solutions to linear and a class of nonlinear PDEs with general boundary conditions, see [8, 9, 10, 11]. Traditionally, linear PDEs with different types of boundary conditions require different specialized methods to obtain solutions. For example, sine transform and series are used for Dirichlet boundary value problems, and cosine transform and series are used for Neumann boundary value problems. In contrast to these specific approaches, the Fokas method uses only the Fourier transform to obtain solutions for all types of boundary conditions, with the frequency variable k𝑘kitalic_k extended to the complex domain. Since the Fourier transform was initially used to analyze the optimal control of spatially invariant systems in [1], it is natural to explore the control of finite-extent systems with boundary conditions using the Fokas method.

Unlike the boundary control setting previously dealt with by the Fokas method in [12], the linear quadratic control appears in PDEs as a forcing term that depends on the states and boundary conditions. Still, we show that the Fokas method can derive an integral representation of the optimal control. Furthermore, the integral control law results in an integral representation of the state that uniformly converges to the boundary conditions, while the series representation does not for nonzero boundary conditions. Also, the numerical computation of integral representations is much easier than computing series representations. It is important to note that the Fokas method applies to general linear PDEs. Thus, our approach can be extended to other linear PDEs, beyond the heat equation.

The contributions of the paper are as follows.First, we derive the control law in the complex domain for the linear quadratic regulator of the heat equation using the unified Fourier transform.The optimal control law depends on the Neumann and Dirichlet boundary conditions, whereas only one of these two is given.Second, we derive an integral representation of the optimal control that depends only on the given initial and boundary conditions and thus can be directly evaluated.Third, we show that the integral representation is equivalent to the series representation of the optimal control in [6] for the hom*ogeneous Dirichlet boundary value problem.We numerically evaluate our integral representation of the control and demonstrate its numerical advantages over the series representation.

The paper is organized as follows: we formulate the linear quadratic regulator problem for the heat equation in SectionII.Then, we derive the transformed optimal control law in SectionIII.We consider the special case of infinite-time control in SectionIV.SectionV derives the integral representation of the optimal control.We compare our integral representation of the control and an existing control form in SectionVI.SectionVII concludes our findings and gives future directions.

II Problem formulation

Consider the following heat equation in the domain Ω={0<x<L,t>0}\Omega=\{0<x<L,t>0\}roman_Ω = { 0 < italic_x < italic_L , italic_t > 0 }, with distributed heat injection u(x,t)𝑢𝑥𝑡u(x,t)italic_u ( italic_x , italic_t )

ϕt=ϕxx+u(x,t),subscriptitalic-ϕ𝑡subscriptitalic-ϕ𝑥𝑥𝑢𝑥𝑡\phi_{t}=\phi_{xx}+u(x,t),italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = italic_ϕ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT + italic_u ( italic_x , italic_t ) ,(1)

and initial condition ϕ(x,0)=ϕ0(x),0<x<Lformulae-sequenceitalic-ϕ𝑥0subscriptitalic-ϕ0𝑥0𝑥𝐿\phi(x,0)=\phi_{0}(x),0<x<Litalic_ϕ ( italic_x , 0 ) = italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) , 0 < italic_x < italic_L. We will denote the Dirichlet and Neumann boundary values by g0,h0subscript𝑔0subscript0g_{0},h_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and g1,h1subscript𝑔1subscript1g_{1},h_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, i.e.,

ϕ(0,t)=g0(t),ϕ(L,t)=h0(t),formulae-sequenceitalic-ϕ0𝑡subscript𝑔0𝑡italic-ϕ𝐿𝑡subscript0𝑡\displaystyle\phi(0,t)=g_{0}(t),\ \phi(L,t)=h_{0}(t),italic_ϕ ( 0 , italic_t ) = italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) , italic_ϕ ( italic_L , italic_t ) = italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) ,t>0;𝑡0\displaystyle t>0;italic_t > 0 ;(2)
ϕx(0,t)=g1(t),ϕx(L,t)=h1(t),formulae-sequencesubscriptitalic-ϕ𝑥0𝑡subscript𝑔1𝑡subscriptitalic-ϕ𝑥𝐿𝑡subscript1𝑡\displaystyle\phi_{x}(0,t)=g_{1}(t),\ \phi_{x}(L,t)=h_{1}(t),italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 0 , italic_t ) = italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) , italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_L , italic_t ) = italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) ,t>0.𝑡0\displaystyle t>0.italic_t > 0 .

Either the pair of Dirichlet boundary values g0,h0subscript𝑔0subscript0g_{0},h_{0}italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT or Neumann boundary values g1,h1subscript𝑔1subscript1g_{1},h_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is provided.Our goal is to find an optimal control u(x,t),x(0,L),t(0,T]formulae-sequencesuperscript𝑢𝑥𝑡𝑥0𝐿𝑡0𝑇u^{*}(x,t),x\in(0,L),t\in(0,T]italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) , italic_x ∈ ( 0 , italic_L ) , italic_t ∈ ( 0 , italic_T ], minimizing the objective functional

J=0T0L[ϕ2(x,t)+u2(x,t)]dxdt+0Lϕ2(x,T)dx𝐽superscriptsubscript0𝑇superscriptsubscript0𝐿delimited-[]superscriptitalic-ϕ2𝑥𝑡superscript𝑢2𝑥𝑡differential-d𝑥differential-d𝑡superscriptsubscript0𝐿superscriptitalic-ϕ2𝑥𝑇differential-d𝑥J=\int_{0}^{T}\int_{0}^{L}\left[\phi^{2}(x,t)+u^{2}(x,t)\right]\mathop{}\!%\mathrm{d}x\ \mathop{}\!\mathrm{d}t+\int_{0}^{L}\phi^{2}(x,T)\mathop{}\!%\mathrm{d}xitalic_J = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT [ italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x , italic_t ) + italic_u start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x , italic_t ) ] roman_d italic_x roman_d italic_t + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_ϕ start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_x , italic_T ) roman_d italic_x(3)

subject to dynamics (1). The main challenge is the unknown relation between the known and unknown boundary values. We will use the Fokas method to represent the unknown boundary values in terms of given initial boundary conditions.

III The transformed finite-time optimal control law

First, we show how to derive the optimal control law in the complex domain using the unified transform [10]. The unified transform is the Fourier transform restricted in the domain 0<x<L0𝑥𝐿0<x<L0 < italic_x < italic_L with k𝑘kitalic_k extended to the complex domain \mathbb{C}blackboard_C:

f^(k)^𝑓𝑘\displaystyle\hat{f}(k)over^ start_ARG italic_f end_ARG ( italic_k )=0Leikxf(x)dx,k,formulae-sequenceabsentsuperscriptsubscript0𝐿superscript𝑒𝑖𝑘𝑥𝑓𝑥differential-d𝑥𝑘\displaystyle=\int_{0}^{L}e^{-ikx}f(x)\mathop{}\!\mathrm{d}x,\quad k\in\mathbb%{C},\,= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_f ( italic_x ) roman_d italic_x , italic_k ∈ blackboard_C ,(4)
f(x)𝑓𝑥\displaystyle f(x)italic_f ( italic_x )=f^(k)eikxdk2π,0<x<L.formulae-sequenceabsentsuperscriptsubscript^𝑓𝑘superscript𝑒𝑖𝑘𝑥d𝑘2𝜋0𝑥𝐿\displaystyle=\int_{-\infty}^{\infty}\hat{f}(k)e^{ikx}\frac{\mathop{}\!\mathrm%{d}k}{2\pi},\quad 0<x<L.= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT over^ start_ARG italic_f end_ARG ( italic_k ) italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG , 0 < italic_x < italic_L .(5)
Remark 1

The unified transform can be regarded as the direct and inverse Fourier transform applied to the following function

F(x)={f(x),0<x<L,0,otherwise.F(x)=\left\{\begin{aligned} &f(x),&0<x<L,\\&0,&\text{otherwise}.\end{aligned}\right.italic_F ( italic_x ) = { start_ROW start_CELL end_CELL start_CELL italic_f ( italic_x ) , end_CELL start_CELL 0 < italic_x < italic_L , end_CELL end_ROW start_ROW start_CELL end_CELL start_CELL 0 , end_CELL start_CELL otherwise . end_CELL end_ROW

Let ϕ^^italic-ϕ\hat{\phi}over^ start_ARG italic_ϕ end_ARG and u^^𝑢\hat{u}over^ start_ARG italic_u end_ARG denote the unified transform of ϕitalic-ϕ\phiitalic_ϕ and u𝑢uitalic_u by (4). We start by taking a derivative with respect to t𝑡titalic_t and then use the relation (1):

ϕ^t^italic-ϕ𝑡\displaystyle\frac{\partial\hat{\phi}}{\partial t}divide start_ARG ∂ over^ start_ARG italic_ϕ end_ARG end_ARG start_ARG ∂ italic_t end_ARG=0Leikxϕt(x,t)dxabsentsuperscriptsubscript0𝐿superscript𝑒𝑖𝑘𝑥subscriptitalic-ϕ𝑡𝑥𝑡differential-d𝑥\displaystyle=\int_{0}^{L}e^{-ikx}\phi_{t}(x,t)\mathop{}\!\mathrm{d}x= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_x , italic_t ) roman_d italic_x
=0Leikxϕxx(x,t)dx+u^(k,t).absentsuperscriptsubscript0𝐿superscript𝑒𝑖𝑘𝑥subscriptitalic-ϕ𝑥𝑥𝑥𝑡differential-d𝑥^𝑢𝑘𝑡\displaystyle=\int_{0}^{L}e^{-ikx}\phi_{xx}(x,t)\mathop{}\!\mathrm{d}x+\hat{u}%(k,t).= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT ( italic_x , italic_t ) roman_d italic_x + over^ start_ARG italic_u end_ARG ( italic_k , italic_t ) .

Using integration by parts, we have

0Leikxϕxxdxsuperscriptsubscript0𝐿superscript𝑒𝑖𝑘𝑥subscriptitalic-ϕ𝑥𝑥differential-d𝑥\displaystyle\int_{0}^{L}e^{-ikx}\phi_{xx}\mathop{}\!\mathrm{d}x∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_x italic_x end_POSTSUBSCRIPT roman_d italic_x
=eikLϕx(L,t)ϕx(0,t)+ik0Leikxϕx(x,t)dx.absentsuperscript𝑒𝑖𝑘𝐿subscriptitalic-ϕ𝑥𝐿𝑡subscriptitalic-ϕ𝑥0𝑡𝑖𝑘superscriptsubscript0𝐿superscript𝑒𝑖𝑘𝑥subscriptitalic-ϕ𝑥𝑥𝑡differential-d𝑥\displaystyle=e^{-ikL}\phi_{x}(L,t)-\phi_{x}(0,t)+ik\int_{0}^{L}e^{-ikx}\phi_{%x}(x,t)\mathop{}\!\mathrm{d}x.= italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_L , italic_t ) - italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 0 , italic_t ) + italic_i italic_k ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_x , italic_t ) roman_d italic_x .
=eikLϕx(L,t)ϕx(0,t)absentsuperscript𝑒𝑖𝑘𝐿subscriptitalic-ϕ𝑥𝐿𝑡subscriptitalic-ϕ𝑥0𝑡\displaystyle=e^{-ikL}\phi_{x}(L,t)-\phi_{x}(0,t)= italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( italic_L , italic_t ) - italic_ϕ start_POSTSUBSCRIPT italic_x end_POSTSUBSCRIPT ( 0 , italic_t )
+ik[eikLϕ(L,t)ϕ(0,t)+ik0LeikLϕ(x,t)dx]𝑖𝑘delimited-[]superscript𝑒𝑖𝑘𝐿italic-ϕ𝐿𝑡italic-ϕ0𝑡𝑖𝑘superscriptsubscript0𝐿superscript𝑒𝑖𝑘𝐿italic-ϕ𝑥𝑡differential-d𝑥\displaystyle+ik\left[e^{-ikL}\phi(L,t)-\phi(0,t)+ik\int_{0}^{L}e^{-ikL}\phi(x%,t)\mathop{}\!\mathrm{d}x\right]+ italic_i italic_k [ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_ϕ ( italic_L , italic_t ) - italic_ϕ ( 0 , italic_t ) + italic_i italic_k ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_ϕ ( italic_x , italic_t ) roman_d italic_x ]

Introducing the notation specified earlier, we find

ϕ^t=k2ϕ^+u^(k,t)+v1(k,t),^italic-ϕ𝑡superscript𝑘2^italic-ϕ^𝑢𝑘𝑡subscript𝑣1𝑘𝑡\displaystyle\dfrac{\partial\hat{\phi}}{\partial t}=-k^{2}\hat{\phi}+\hat{u}(k%,t)+v_{1}(k,t),divide start_ARG ∂ over^ start_ARG italic_ϕ end_ARG end_ARG start_ARG ∂ italic_t end_ARG = - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG + over^ start_ARG italic_u end_ARG ( italic_k , italic_t ) + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) ,(6)

where

v1(k,t):=g1(t)ikg0(t)+eikL(h1(t)+ikh0(t)).assignsubscript𝑣1𝑘𝑡subscript𝑔1𝑡𝑖𝑘subscript𝑔0𝑡superscript𝑒𝑖𝑘𝐿subscript1𝑡𝑖𝑘subscript0𝑡v_{1}(k,t):=-g_{1}(t)-ikg_{0}(t)+e^{-ikL}\left(h_{1}(t)+ikh_{0}(t)\right).italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) := - italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) - italic_i italic_k italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) + italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_i italic_k italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) ) .(7)

(6) is an ordinary differential equation (ODE) in the time variable.

Remark 2

The inverse transform (5) involves real k𝑘kitalic_k, and thus we only need ϕ^(k,t)^italic-ϕ𝑘𝑡\hat{\phi}(k,t)over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) for real k𝑘kitalic_k in (6).However, we will find it useful to detour from the real line to the complex plane.

Parseval’s identity implies that minimizing (3) is the same as finding u^^𝑢\hat{u}over^ start_ARG italic_u end_ARG that minimizes

J^=[0T(ϕ^2(k,t)+u^2(k,t))𝑑t+ϕ^2(k,T)]dk^𝐽superscriptsubscriptdelimited-[]superscriptsubscript0𝑇superscript^italic-ϕ2𝑘𝑡superscript^𝑢2𝑘𝑡differential-d𝑡superscript^italic-ϕ2𝑘𝑇differential-d𝑘\hat{J}=\int_{-\infty}^{\infty}\left[\int_{0}^{T}\left(\hat{\phi}^{2}(k,t)+%\hat{u}^{2}(k,t)\right)dt+\hat{\phi}^{2}(k,T)\right]\mathop{}\!\mathrm{d}kover^ start_ARG italic_J end_ARG = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT [ ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_t ) + over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_t ) ) italic_d italic_t + over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_T ) ] roman_d italic_k(8)

subject to (6) and ϕ^(k,0)=ϕ^0(k).^italic-ϕ𝑘0subscript^italic-ϕ0𝑘\hat{\phi}(k,0)=\hat{\phi}_{0}(k).over^ start_ARG italic_ϕ end_ARG ( italic_k , 0 ) = over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) . Since (6) is an ODE in the time variable parameterized by k𝑘kitalic_k, at a fixed k𝑘kitalic_k it amounts to no more than a classical finite-dimensional linear quadratic regulator problem.

Theorem 1

The optimal control for (8) subject to (6) is given by

u^(k,t)=p^(k,t)ϕ^(k,t)12v1(k,t)r1(k,t)12r2(k,t),superscript^𝑢𝑘𝑡^𝑝𝑘𝑡^italic-ϕ𝑘𝑡12subscript𝑣1𝑘𝑡subscript𝑟1𝑘𝑡12subscript𝑟2𝑘𝑡\hat{u}^{*}(k,t)=-\hat{p}(k,t)\hat{\phi}(k,t)-\dfrac{1}{2}v_{1}(k,t)r_{1}(k,t)%-\frac{1}{2}r_{2}(k,t),over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k , italic_t ) = - over^ start_ARG italic_p end_ARG ( italic_k , italic_t ) over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_k , italic_t ) ,(9)

where for all k𝑘kitalic_k, p^(k,t)^𝑝𝑘𝑡\hat{p}(k,t)over^ start_ARG italic_p end_ARG ( italic_k , italic_t ) and 𝐫(k,t):=[r1(k,t)r2(k,t)]assign𝐫𝑘𝑡matrixsubscript𝑟1𝑘𝑡subscript𝑟2𝑘𝑡\mathbf{r}(k,t):=\begin{bmatrix}r_{1}(k,t)&r_{2}(k,t)\end{bmatrix}bold_r ( italic_k , italic_t ) := [ start_ARG start_ROW start_CELL italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) end_CELL start_CELL italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_k , italic_t ) end_CELL end_ROW end_ARG ] are solutions to the following equations

p^tsubscript^𝑝𝑡\displaystyle-\hat{p}_{t}- over^ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=12k2p^p^2,p^(k,T)=1,formulae-sequenceabsent12superscript𝑘2^𝑝superscript^𝑝2^𝑝𝑘𝑇1\displaystyle=1-2k^{2}\hat{p}-\hat{p}^{2},\quad\hat{p}(k,T)=1,= 1 - 2 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG - over^ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , over^ start_ARG italic_p end_ARG ( italic_k , italic_T ) = 1 ,(10)
𝐐tsubscript𝐐𝑡\displaystyle-\mathbf{Q}_{t}- bold_Q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=2𝐐𝐌(k,t)+𝐫𝐝14𝐫𝐫,𝐐(k,T)=𝟎2×2,formulae-sequenceabsent2𝐐𝐌𝑘𝑡𝐫superscript𝐝top14𝐫superscript𝐫top𝐐𝑘𝑇subscript022\displaystyle=2\mathbf{Q}\,\mathbf{M}(k,t)+\mathbf{r}\,\mathbf{d}^{\top}-%\dfrac{1}{4}\mathbf{r}\,\mathbf{r}^{\top},\quad\mathbf{Q}(k,T)=\mathbf{0}_{2%\times 2},= 2 bold_Q bold_M ( italic_k , italic_t ) + bold_r bold_d start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 4 end_ARG bold_r bold_r start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT , bold_Q ( italic_k , italic_T ) = bold_0 start_POSTSUBSCRIPT 2 × 2 end_POSTSUBSCRIPT ,(11)
𝐫tsubscript𝐫𝑡\displaystyle-\mathbf{r}_{t}- bold_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=k2𝐫+𝐌(k,t)𝐫p^𝐫+2p^𝐝,𝐫(k,T)=𝟎2×1formulae-sequenceabsentsuperscript𝑘2𝐫𝐌superscript𝑘𝑡top𝐫^𝑝𝐫2^𝑝𝐝𝐫𝑘𝑇subscript021\displaystyle=-k^{2}\,\mathbf{r}+\mathbf{M}(k,t)^{\top}\mathbf{r}-\hat{p}\,%\mathbf{r}+2\hat{p}\,\mathbf{d},\quad\mathbf{r}(k,T)=\mathbf{0}_{2\times 1}= - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_r + bold_M ( italic_k , italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r - over^ start_ARG italic_p end_ARG bold_r + 2 over^ start_ARG italic_p end_ARG bold_d , bold_r ( italic_k , italic_T ) = bold_0 start_POSTSUBSCRIPT 2 × 1 end_POSTSUBSCRIPT(12)

with 𝐝=[10],𝐌(k,t)=[0v1t00].formulae-sequence𝐝matrix10𝐌𝑘𝑡matrix0subscript𝑣1𝑡00\mathbf{d}=\begin{bmatrix}1\\0\end{bmatrix},\mathbf{M}(k,t)=\begin{bmatrix}0&\frac{\partial v_{1}}{\partialt%}\\0&0\end{bmatrix}.bold_d = [ start_ARG start_ROW start_CELL 1 end_CELL end_ROW start_ROW start_CELL 0 end_CELL end_ROW end_ARG ] , bold_M ( italic_k , italic_t ) = [ start_ARG start_ROW start_CELL 0 end_CELL start_CELL divide start_ARG ∂ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_t end_ARG end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 0 end_CELL end_ROW end_ARG ] .

Proof:

It is convenient to rewrite (9) as

u^(k,t)=p^(k,t)ϕ^(k,t)12𝐯(k,t)𝐫(k,t),superscript^𝑢𝑘𝑡^𝑝𝑘𝑡^italic-ϕ𝑘𝑡12𝐯superscript𝑘𝑡top𝐫𝑘𝑡\hat{u}^{*}(k,t)=-\hat{p}(k,t)\hat{\phi}(k,t)-\dfrac{1}{2}\mathbf{v}(k,t)^{%\top}\mathbf{r}(k,t),over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k , italic_t ) = - over^ start_ARG italic_p end_ARG ( italic_k , italic_t ) over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_v ( italic_k , italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_k , italic_t ) ,

where 𝐯(k,t)=[v1(k,t)1]𝐯𝑘𝑡superscriptmatrixsubscript𝑣1𝑘𝑡1top\mathbf{v}(k,t)=\begin{bmatrix}v_{1}(k,t)&1\end{bmatrix}^{\top}bold_v ( italic_k , italic_t ) = [ start_ARG start_ROW start_CELL italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) end_CELL start_CELL 1 end_CELL end_ROW end_ARG ] start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT.For any fixed k𝑘kitalic_k, we omit the dependence on k𝑘kitalic_k in variables ϕ^^italic-ϕ\hat{\phi}over^ start_ARG italic_ϕ end_ARG and u^^𝑢\hat{u}over^ start_ARG italic_u end_ARG and rewrite (6) as a linear time-varying system:

ϕ^tsubscript^italic-ϕ𝑡\displaystyle\hat{\phi}_{t}over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=k2ϕ^+u^+𝐝𝐯,absentsuperscript𝑘2^italic-ϕ^𝑢superscript𝐝top𝐯\displaystyle=-k^{2}\hat{\phi}+\hat{u}+\mathbf{d}^{\top}\mathbf{v},= - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG + over^ start_ARG italic_u end_ARG + bold_d start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_v ,(13)
𝐯tsubscript𝐯𝑡\displaystyle\mathbf{v}_{t}bold_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=𝐌(t)𝐯absent𝐌𝑡𝐯\displaystyle=\mathbf{M}(t)\,\mathbf{v}= bold_M ( italic_t ) bold_v

with 𝐝,𝐌𝐝𝐌\mathbf{d},\mathbf{M}bold_d , bold_M defined in Theorem1. The control problem is now to find an u^(t),t[0,T]superscript^𝑢𝑡𝑡0𝑇\hat{u}^{*}(t),t\in[0,T]over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) , italic_t ∈ [ 0 , italic_T ], minimizing

V(ϕ^(0),𝐯(0),u^(),0)=0T[ϕ^2(τ)+u^2(τ)]dτ+ϕ^2(T)𝑉^italic-ϕ0𝐯0^𝑢0superscriptsubscript0𝑇delimited-[]superscript^italic-ϕ2𝜏superscript^𝑢2𝜏differential-d𝜏superscript^italic-ϕ2𝑇V(\hat{\phi}(0),\mathbf{v}(0),\hat{u}(\cdot),0)=\int_{0}^{T}\left[\hat{\phi}^{%2}(\tau)+\hat{u}^{2}(\tau)\right]\mathop{}\!\mathrm{d}\tau+\hat{\phi}^{2}(T)italic_V ( over^ start_ARG italic_ϕ end_ARG ( 0 ) , bold_v ( 0 ) , over^ start_ARG italic_u end_ARG ( ⋅ ) , 0 ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_T end_POSTSUPERSCRIPT [ over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_τ ) + over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_τ ) ] roman_d italic_τ + over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_T )

subject to (13).

We use the principle of optimality, also known as dynamic programming, to derive the optimal control. Let u^[a,b]^𝑢𝑎𝑏\hat{u}[a,b]over^ start_ARG italic_u end_ARG [ italic_a , italic_b ] denote a function u()𝑢u(\cdot)italic_u ( ⋅ ) restricted to the interval [a,b]𝑎𝑏[a,b][ italic_a , italic_b ]. Given t[0,T]𝑡0𝑇t\in[0,T]italic_t ∈ [ 0 , italic_T ], let us also make the definition

V(ϕ^,𝐯,t):=minu^[t,T]V(ϕ^,𝐯,u^,t).assignsuperscript𝑉^italic-ϕ𝐯𝑡subscript^𝑢𝑡𝑇𝑉^italic-ϕ𝐯^𝑢𝑡V^{*}(\hat{\phi},\mathbf{v},t):=\min_{\hat{u}[t,T]}\ V(\hat{\phi},\mathbf{v},%\hat{u},t).italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) := roman_min start_POSTSUBSCRIPT over^ start_ARG italic_u end_ARG [ italic_t , italic_T ] end_POSTSUBSCRIPT italic_V ( over^ start_ARG italic_ϕ end_ARG , bold_v , over^ start_ARG italic_u end_ARG , italic_t ) .(14)

Two properties of the optimal value function (14) [13, Eq.2.2-5, Eq.2.3-7] applied to dynamics (13) are stated as follows.

Lemma 1

The optimal value function V(ϕ^,𝐯,t)superscript𝑉^italic-ϕ𝐯𝑡V^{*}(\hat{\phi},\mathbf{v},t)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) satisfies the Hamilton-Jacobi-Bellman equation:

\pdvtV(ϕ^,𝐯,t)=minu^(t){ϕ^2(t)+u^2(t)+\pdvϕ^V(ϕ^,𝐯,t)ϕ^t+[\pdv𝐯V(ϕ^,𝐯,t)]𝐯t}\pdv𝑡superscript𝑉^italic-ϕ𝐯𝑡subscript^𝑢𝑡superscript^italic-ϕ2𝑡superscript^𝑢2𝑡\pdv^italic-ϕsuperscript𝑉^italic-ϕ𝐯𝑡subscript^italic-ϕ𝑡superscriptdelimited-[]\pdv𝐯superscript𝑉^italic-ϕ𝐯𝑡topsubscript𝐯𝑡\pdv{}{t}V^{*}(\hat{\phi},\mathbf{v},t)\\=-\min_{\hat{u}(t)}\Big{\{}\hat{\phi}^{2}(t)+\hat{u}^{2}(t)+\pdv{}{\hat{\phi}}%V^{*}(\hat{\phi},\mathbf{v},t)\hat{\phi}_{t}\\+\left[\pdv{}{\mathbf{v}}V^{*}(\hat{\phi},\mathbf{v},t)\right]^{\top}\mathbf{v%}_{t}\Big{\}}start_ROW start_CELL italic_t italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) end_CELL end_ROW start_ROW start_CELL = - roman_min start_POSTSUBSCRIPT over^ start_ARG italic_u end_ARG ( italic_t ) end_POSTSUBSCRIPT { over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) + over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) + over^ start_ARG italic_ϕ end_ARG italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_CELL end_ROW start_ROW start_CELL + [ bold_v italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) ] start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT } end_CELL end_ROW(15)

with the boundary condition V(ϕ^(T),𝐯(T),T)=ϕ^2(T)superscript𝑉^italic-ϕ𝑇𝐯𝑇𝑇superscript^italic-ϕ2𝑇V^{*}(\hat{\phi}(T),\mathbf{v}(T),T)=\hat{\phi}^{2}(T)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG ( italic_T ) , bold_v ( italic_T ) , italic_T ) = over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_T ), and the control given by the minimization in (15) is the optimal control u^(t)superscript^𝑢𝑡\hat{u}^{*}(t)over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) at time t𝑡titalic_t.

Lemma 2

The optimal value function V(ϕ^,𝐯,t)superscript𝑉^italic-ϕ𝐯𝑡V^{*}(\hat{\phi},\mathbf{v},t)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) has the quadratic form

V(ϕ^,𝐯,t)=p^(t)ϕ^2+𝐯𝐐(t)𝐯+𝐯𝐫(t)ϕ^,superscript𝑉^italic-ϕ𝐯𝑡^𝑝𝑡superscript^italic-ϕ2superscript𝐯top𝐐𝑡𝐯superscript𝐯top𝐫𝑡^italic-ϕV^{*}(\hat{\phi},\mathbf{v},t)=\hat{p}(t)\hat{\phi}^{2}+\mathbf{v}^{\top}%\mathbf{Q}(t)\mathbf{v}+\mathbf{v}^{\top}\mathbf{r}(t)\hat{\phi},italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) = over^ start_ARG italic_p end_ARG ( italic_t ) over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_Q ( italic_t ) bold_v + bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_t ) over^ start_ARG italic_ϕ end_ARG ,

where 𝐐(t)𝐐𝑡\mathbf{Q}(t)bold_Q ( italic_t ) is symmetric.

Using Lemma2, we can solve (15)italic-(15italic-)\eqref{eq:hjb}italic_( italic_) to obtain the optimal control. From Lemma2, the left-hand side in (15) becomes

\pdvVt(ϕ^,𝐯,t)=p^tϕ^2+𝐯𝐐t𝐯+𝐯𝐫tϕ^.\pdvsuperscript𝑉𝑡^italic-ϕ𝐯𝑡subscript^𝑝𝑡superscript^italic-ϕ2superscript𝐯topsubscript𝐐𝑡𝐯superscript𝐯topsubscript𝐫𝑡^italic-ϕ\pdv{V^{*}}{t}(\hat{\phi},\mathbf{v},t)=\hat{p}_{t}\hat{\phi}^{2}+\mathbf{v}^{%\top}\mathbf{Q}_{t}\mathbf{v}+\mathbf{v}^{\top}\mathbf{r}_{t}\,\hat{\phi}.italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT italic_t ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) = over^ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_Q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT bold_v + bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT over^ start_ARG italic_ϕ end_ARG .(16)

The terms with partial derivatives on the right-hand side become

\pdvVϕ^(ϕ^,𝐯,t)ϕ^t=(2p^(t)ϕ^+𝐯𝐫(t))(k2ϕ^+u^+𝐝𝐯),\pdvsuperscript𝑉^italic-ϕ^italic-ϕ𝐯𝑡subscript^italic-ϕ𝑡2^𝑝𝑡^italic-ϕsuperscript𝐯top𝐫𝑡superscript𝑘2^italic-ϕ^𝑢superscript𝐝top𝐯\pdv{V^{*}}{\hat{\phi}}(\hat{\phi},\mathbf{v},t)\hat{\phi}_{t}=(2\hat{p}(t)%\hat{\phi}+\mathbf{v}^{\top}\mathbf{r}(t))(-k^{2}\hat{\phi}+\hat{u}+\mathbf{d}%^{\top}\mathbf{v}),italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( 2 over^ start_ARG italic_p end_ARG ( italic_t ) over^ start_ARG italic_ϕ end_ARG + bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_t ) ) ( - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG + over^ start_ARG italic_u end_ARG + bold_d start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_v ) ,
[\pdvV𝐯(ϕ^,𝐯,t)]𝐯t=(2𝐯𝐐(t)+ϕ^𝐫(t))𝐌(t)𝐯.superscriptdelimited-[]\pdvsuperscript𝑉𝐯^italic-ϕ𝐯𝑡topsubscript𝐯𝑡2superscript𝐯top𝐐𝑡^italic-ϕ𝐫superscript𝑡top𝐌𝑡𝐯\left[\pdv{V^{*}}{\mathbf{v}}(\hat{\phi},\mathbf{v},t)\right]^{\top}\mathbf{v}%_{t}=(2\mathbf{v}^{\top}\mathbf{Q}(t)+\hat{\phi}\,\mathbf{r}(t)^{\top})\mathbf%{M}(t)\mathbf{v}.[ italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT bold_v ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) ] start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = ( 2 bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_Q ( italic_t ) + over^ start_ARG italic_ϕ end_ARG bold_r ( italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT ) bold_M ( italic_t ) bold_v .

Substitute the above terms into the right-hand side in (15) and complete the square, we have

ϕ^2+u^2+\pdvVϕ^(ϕ^,𝐯,t)ϕ^t+[\pdvV𝐯(ϕ^,𝐯,t)]𝐯tsuperscript^italic-ϕ2superscript^𝑢2\pdvsuperscript𝑉^italic-ϕ^italic-ϕ𝐯𝑡subscript^italic-ϕ𝑡superscriptdelimited-[]\pdvsuperscript𝑉𝐯^italic-ϕ𝐯𝑡topsubscript𝐯𝑡\displaystyle\hat{\phi}^{2}+\hat{u}^{2}+\pdv{V^{*}}{\hat{\phi}}(\hat{\phi},%\mathbf{v},t)\hat{\phi}_{t}+\left[\pdv{V^{*}}{\mathbf{v}}(\hat{\phi},\mathbf{v%},t)\right]^{\top}\mathbf{v}_{t}over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + [ italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT bold_v ( over^ start_ARG italic_ϕ end_ARG , bold_v , italic_t ) ] start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_v start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT(17)
=\displaystyle==(u^+p^(t)ϕ^+12𝐯𝐫(t))2superscript^𝑢^𝑝𝑡^italic-ϕ12superscript𝐯top𝐫𝑡2\displaystyle(\hat{u}+\hat{p}(t)\hat{\phi}+\dfrac{1}{2}\mathbf{v}^{\top}%\mathbf{r}(t))^{2}( over^ start_ARG italic_u end_ARG + over^ start_ARG italic_p end_ARG ( italic_t ) over^ start_ARG italic_ϕ end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_t ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
+(12k2p^(t)p^2(t))ϕ^212superscript𝑘2^𝑝𝑡superscript^𝑝2𝑡superscript^italic-ϕ2\displaystyle+(1-2k^{2}\hat{p}(t)-\hat{p}^{2}(t))\hat{\phi}^{2}+ ( 1 - 2 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_t ) - over^ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_t ) ) over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT
+𝐯(2𝐐(t)𝐌(t)+𝐫(t)𝐝14𝐫(t)𝐫(t))𝐯superscript𝐯top2𝐐𝑡𝐌𝑡𝐫𝑡superscript𝐝top14𝐫𝑡𝐫superscript𝑡top𝐯\displaystyle+\mathbf{v}^{\top}(2\mathbf{Q}(t)\mathbf{M}(t)+\mathbf{r}(t)%\mathbf{d}^{\top}-\dfrac{1}{4}\mathbf{r}(t)\mathbf{r}(t)^{\top})\mathbf{v}+ bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT ( 2 bold_Q ( italic_t ) bold_M ( italic_t ) + bold_r ( italic_t ) bold_d start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 4 end_ARG bold_r ( italic_t ) bold_r ( italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT ) bold_v
+𝐯(k2𝐫(t)+𝐌(t)𝐫(t)p^(t)𝐫(t)+2p^(t)𝐝)ϕ^.superscript𝐯topsuperscript𝑘2𝐫𝑡𝐌superscript𝑡top𝐫𝑡^𝑝𝑡𝐫𝑡2^𝑝𝑡𝐝^italic-ϕ\displaystyle+\mathbf{v}^{\top}(-k^{2}\mathbf{r}(t)+\mathbf{M}(t)^{\top}%\mathbf{r}(t)-\hat{p}(t)\mathbf{r}(t)+2\hat{p}(t)\mathbf{d})\hat{\phi}.+ bold_v start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT ( - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_r ( italic_t ) + bold_M ( italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_t ) - over^ start_ARG italic_p end_ARG ( italic_t ) bold_r ( italic_t ) + 2 over^ start_ARG italic_p end_ARG ( italic_t ) bold_d ) over^ start_ARG italic_ϕ end_ARG .

Therefore, the minimization in (15) is achieved by

u^(t)=p^(t)ϕ^(t)12𝐯(t)𝐫(t).superscript^𝑢𝑡^𝑝𝑡^italic-ϕ𝑡12𝐯superscript𝑡top𝐫𝑡\hat{u}^{*}(t)=-\hat{p}(t)\hat{\phi}(t)-\dfrac{1}{2}\mathbf{v}(t)^{\top}%\mathbf{r}(t).over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_t ) = - over^ start_ARG italic_p end_ARG ( italic_t ) over^ start_ARG italic_ϕ end_ARG ( italic_t ) - divide start_ARG 1 end_ARG start_ARG 2 end_ARG bold_v ( italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r ( italic_t ) .(18)

Substitute (18) into (17) and equate (16), together with the boundary condition V(ϕ^(T),𝐯(T),T)=ϕ^2(T)superscript𝑉^italic-ϕ𝑇𝐯𝑇𝑇superscript^italic-ϕ2𝑇V^{*}(\hat{\phi}(T),\mathbf{v}(T),T)=\hat{\phi}^{2}(T)italic_V start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( over^ start_ARG italic_ϕ end_ARG ( italic_T ) , bold_v ( italic_T ) , italic_T ) = over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_T ), we have

p^tsubscript^𝑝𝑡\displaystyle-\hat{p}_{t}- over^ start_ARG italic_p end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=12k2p^p^2,p^(T)=1formulae-sequenceabsent12superscript𝑘2^𝑝superscript^𝑝2^𝑝𝑇1\displaystyle=1-2k^{2}\hat{p}-\hat{p}^{2},\quad\hat{p}(T)=1= 1 - 2 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG - over^ start_ARG italic_p end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , over^ start_ARG italic_p end_ARG ( italic_T ) = 1
𝐐tsubscript𝐐𝑡\displaystyle-\mathbf{Q}_{t}- bold_Q start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=2𝐐𝐌(t)+𝐫𝐝14𝐫𝐫,𝐐(T)=𝟎2×2formulae-sequenceabsent2𝐐𝐌𝑡𝐫superscript𝐝top14𝐫superscript𝐫top𝐐𝑇subscript022\displaystyle=2\mathbf{Q}\,\mathbf{M}(t)+\mathbf{r}\,\mathbf{d}^{\top}-\dfrac{%1}{4}\mathbf{r}\,\mathbf{r}^{\top},\mathbf{Q}(T)=\mathbf{0}_{2\times 2}= 2 bold_Q bold_M ( italic_t ) + bold_r bold_d start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT - divide start_ARG 1 end_ARG start_ARG 4 end_ARG bold_r bold_r start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT , bold_Q ( italic_T ) = bold_0 start_POSTSUBSCRIPT 2 × 2 end_POSTSUBSCRIPT
𝐫tsubscript𝐫𝑡\displaystyle-\mathbf{r}_{t}- bold_r start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT=k2𝐫+𝐌(t)𝐫p^𝐫+2p^𝐝,𝐫(T)=𝟎2×1formulae-sequenceabsentsuperscript𝑘2𝐫𝐌superscript𝑡top𝐫^𝑝𝐫2^𝑝𝐝𝐫𝑇subscript021\displaystyle=-k^{2}\,\mathbf{r}+\mathbf{M}(t)^{\top}\mathbf{r}-\hat{p}\,%\mathbf{r}+2\hat{p}\,\mathbf{d},\mathbf{r}(T)=\mathbf{0}_{2\times 1}= - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT bold_r + bold_M ( italic_t ) start_POSTSUPERSCRIPT ⊤ end_POSTSUPERSCRIPT bold_r - over^ start_ARG italic_p end_ARG bold_r + 2 over^ start_ARG italic_p end_ARG bold_d , bold_r ( italic_T ) = bold_0 start_POSTSUBSCRIPT 2 × 1 end_POSTSUBSCRIPT

IV The infinite-time optimal control law

In the case of infinite-time control, i.e., T𝑇T\to\inftyitalic_T → ∞, (9) still holds, and we disregard the terminal cost ϕ^2(k,T)superscript^italic-ϕ2𝑘𝑇\hat{\phi}^{2}(k,T)over^ start_ARG italic_ϕ end_ARG start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ( italic_k , italic_T ). Then, the initial condition for p^^𝑝\hat{p}over^ start_ARG italic_p end_ARG becomes p^(k,T)=0^𝑝𝑘𝑇0\hat{p}(k,T)=0over^ start_ARG italic_p end_ARG ( italic_k , italic_T ) = 0. For every k𝑘kitalic_k in the complex plane and every finite t𝑡titalic_t, the solution to (10) starting from p^(k,T)=0^𝑝𝑘𝑇0\hat{p}(k,T)=0over^ start_ARG italic_p end_ARG ( italic_k , italic_T ) = 0 with T𝑇T\to\inftyitalic_T → ∞ converges to the equilibrium with nonnegative real value, which is a root to the following:

12k2p^(k)p^(k)2=0.12superscript𝑘2^𝑝𝑘^𝑝superscript𝑘201-2k^{2}\hat{p}(k)-\hat{p}(k)^{2}=0.1 - 2 italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_k ) - over^ start_ARG italic_p end_ARG ( italic_k ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 0 .(19)

For 𝐫(k,t)𝐫𝑘𝑡\mathbf{r}(k,t)bold_r ( italic_k , italic_t ), (12) can be explicitly written as

r1tsubscript𝑟1𝑡\displaystyle-r_{1t}- italic_r start_POSTSUBSCRIPT 1 italic_t end_POSTSUBSCRIPT=(k2+p^(k))r1+2p^(k),absentsuperscript𝑘2^𝑝𝑘subscript𝑟12^𝑝𝑘\displaystyle=-(k^{2}+\hat{p}(k))r_{1}+2\hat{p}(k),= - ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + over^ start_ARG italic_p end_ARG ( italic_k ) ) italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 2 over^ start_ARG italic_p end_ARG ( italic_k ) ,r1(T)=0,subscript𝑟1𝑇0\displaystyle r_{1}(T)=0,italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_T ) = 0 ,(20)
r2tsubscript𝑟2𝑡\displaystyle-r_{2t}- italic_r start_POSTSUBSCRIPT 2 italic_t end_POSTSUBSCRIPT=(k2+p^(k))r2+r1v1t,absentsuperscript𝑘2^𝑝𝑘subscript𝑟2subscript𝑟1subscript𝑣1𝑡\displaystyle=-(k^{2}+\hat{p}(k))r_{2}+r_{1}\frac{\partial v_{1}}{\partial t},= - ( italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + over^ start_ARG italic_p end_ARG ( italic_k ) ) italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT divide start_ARG ∂ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_t end_ARG ,r2(T)=0.subscript𝑟2𝑇0\displaystyle r_{2}(T)=0.italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_T ) = 0 .(21)

Let ω(k):=k4+1.assign𝜔𝑘superscript𝑘41\omega(k):=\sqrt{k^{4}+1}.italic_ω ( italic_k ) := square-root start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 1 end_ARG . Solving the above equations we find

p^(k)^𝑝𝑘\displaystyle\hat{p}(k)over^ start_ARG italic_p end_ARG ( italic_k )=k2+ω(k),absentsuperscript𝑘2𝜔𝑘\displaystyle\!=\!-k^{2}+\omega(k),= - italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT + italic_ω ( italic_k ) ,
r1(k)subscript𝑟1𝑘\displaystyle r_{1}(k)italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k )=2p^(k)teω(k)(tξ)dξ=2p^(k)ω(k),absent2^𝑝𝑘subscriptsuperscript𝑡superscript𝑒𝜔𝑘𝑡𝜉differential-d𝜉2^𝑝𝑘𝜔𝑘\displaystyle\!=\!2\hat{p}(k)\int^{\infty}_{t}e^{\omega(k)(t-\xi)}\mathop{}\!%\mathrm{d}\xi=\dfrac{2\hat{p}(k)}{\omega(k)},= 2 over^ start_ARG italic_p end_ARG ( italic_k ) ∫ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT roman_d italic_ξ = divide start_ARG 2 over^ start_ARG italic_p end_ARG ( italic_k ) end_ARG start_ARG italic_ω ( italic_k ) end_ARG ,
r2(k,t)subscript𝑟2𝑘𝑡\displaystyle r_{2}(k,t)italic_r start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_k , italic_t )=r1(k)teω(k)(tξ)v1ξdξabsentsubscript𝑟1𝑘subscriptsuperscript𝑡superscript𝑒𝜔𝑘𝑡𝜉subscript𝑣1𝜉differential-d𝜉\displaystyle\!=\!r_{1}(k)\int^{\infty}_{t}e^{\omega(k)(t-\xi)}\frac{\partial v%_{1}}{\partial\xi}\mathop{}\!\mathrm{d}\xi= italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k ) ∫ start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT divide start_ARG ∂ italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG start_ARG ∂ italic_ξ end_ARG roman_d italic_ξ
=r1(k)(v1(k,t)+ω(k)teω(k)(tξ)v1(k,ξ)dξ).absentsubscript𝑟1𝑘subscript𝑣1𝑘𝑡𝜔𝑘superscriptsubscript𝑡superscript𝑒𝜔𝑘𝑡𝜉subscript𝑣1𝑘𝜉differential-d𝜉\displaystyle\!=\!r_{1}(k)(-v_{1}(k,t)\!+\!\omega(k)\int_{t}^{\infty}e^{\omega%(k)(t-\xi)}v_{1}(k,\xi)\!\mathop{}\!\mathrm{d}\xi).= italic_r start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k ) ( - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) + italic_ω ( italic_k ) ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_ξ ) roman_d italic_ξ ) .

Using the above expressions in (9), we find an infinite-time optimal control law in the complex domain:

u^(k,t)=p^(k)ϕ^(k,t)p^(k)teω(k)(tξ)v1(k,ξ)dξ.superscript^𝑢𝑘𝑡^𝑝𝑘^italic-ϕ𝑘𝑡^𝑝𝑘superscriptsubscript𝑡superscript𝑒𝜔𝑘𝑡𝜉subscript𝑣1𝑘𝜉differential-d𝜉\hat{u}^{*}(k,t)=-\hat{p}(k)\hat{\phi}(k,t)-\hat{p}(k)\int_{t}^{\infty}e^{%\omega(k)(t-\xi)}v_{1}(k,\xi)\mathop{}\!\mathrm{d}\xi.over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k , italic_t ) = - over^ start_ARG italic_p end_ARG ( italic_k ) over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_ξ ) roman_d italic_ξ .(22)

Substitute (22) into (6), we have

ϕ^t=ω(k)ϕ^+v1(k,t)p^(k)teω(k)(tξ)v1(k,ξ)dξ.^italic-ϕ𝑡𝜔𝑘^italic-ϕsubscript𝑣1𝑘𝑡^𝑝𝑘superscriptsubscript𝑡superscript𝑒𝜔𝑘𝑡𝜉subscript𝑣1𝑘𝜉differential-d𝜉\dfrac{\partial\hat{\phi}}{\partial t}=-\omega(k)\hat{\phi}+v_{1}(k,t)-\hat{p}%(k)\int_{t}^{\infty}e^{\omega(k)(t-\xi)}v_{1}(k,\xi)\mathop{}\!\mathrm{d}\xi.divide start_ARG ∂ over^ start_ARG italic_ϕ end_ARG end_ARG start_ARG ∂ italic_t end_ARG = - italic_ω ( italic_k ) over^ start_ARG italic_ϕ end_ARG + italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_ξ ) roman_d italic_ξ .(23)

Now, we analyze the well-posedness and stability of the heat equation (1) after substituting optimal control (22).Unlike traditional methods that represent PDEs in abstract differential equations, e.g., see [14], the Fourier transform decomposes the heat equation into an ODE (23) for each k𝑘kitalic_k.Therefore, it suffices to analyze the well-posedness and stability of the ODE for each k𝑘kitalic_k.Let b(k,t):=v1(k,t)p^(k)teω(k)(tξ)v1(k,ξ)dξassign𝑏𝑘𝑡subscript𝑣1𝑘𝑡^𝑝𝑘superscriptsubscript𝑡superscript𝑒𝜔𝑘𝑡𝜉subscript𝑣1𝑘𝜉differential-d𝜉b(k,t):=v_{1}(k,t)-\hat{p}(k)\int_{t}^{\infty}e^{\omega(k)(t-\xi)}v_{1}(k,\xi)%\mathop{}\!\mathrm{d}\xiitalic_b ( italic_k , italic_t ) := italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_ξ ) roman_d italic_ξ.The solution to (23) with the transformed initial condition ϕ^(k,0)=ϕ^0(k)^italic-ϕ𝑘0subscript^italic-ϕ0𝑘\hat{\phi}(k,0)=\hat{\phi}_{0}(k)over^ start_ARG italic_ϕ end_ARG ( italic_k , 0 ) = over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) is given by

ϕ^(k,t)=eω(k)tϕ^0(k)+0teω(k)(tξ)b(k,ξ)dξ.^italic-ϕ𝑘𝑡superscript𝑒𝜔𝑘𝑡subscript^italic-ϕ0𝑘superscriptsubscript0𝑡superscript𝑒𝜔𝑘𝑡𝜉𝑏𝑘𝜉differential-d𝜉\hat{\phi}(k,t)=e^{-\omega(k)t}\hat{\phi}_{0}(k)+\int_{0}^{t}e^{-\omega(k)(t-%\xi)}b(k,\xi)\mathop{}\!\mathrm{d}\xi.over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) = italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT italic_b ( italic_k , italic_ξ ) roman_d italic_ξ .

For simplicity, we assume that v1(,)subscript𝑣1v_{1}(\cdot,\cdot)italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( ⋅ , ⋅ ) is bounded, and there exists a finite time K𝐾Kitalic_K such that v1(k,t)=0subscript𝑣1𝑘𝑡0v_{1}(k,t)=0italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) = 0 for all t>K𝑡𝐾t>Kitalic_t > italic_K. Then, b(k,t)=0𝑏𝑘𝑡0b(k,t)=0italic_b ( italic_k , italic_t ) = 0 for all t>K𝑡𝐾t>Kitalic_t > italic_K.Following Remark2, for every real k𝑘kitalic_k, the solution ϕ^(k,t)^italic-ϕ𝑘𝑡\hat{\phi}(k,t)over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) is unique, and ϕ^(k,t)0^italic-ϕ𝑘𝑡0\hat{\phi}(k,t)\to 0over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) → 0 as t𝑡t\to\inftyitalic_t → ∞ since ω(k)>0𝜔𝑘0\omega(k)>0italic_ω ( italic_k ) > 0.Tighter conditions for well-posedness and stability can be obtained through more complicated analysis and will be pursued in the future.

V The integral representation of the optimal control

After obtaining the control law (22) in the transformed domain, we aim to derive an expression of the optimal control u(x,t)superscript𝑢𝑥𝑡u^{*}(x,t)italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) in the original space domain.Combining (22) and (23), we have

u^(k,t)=ϕ^t+k2ϕ^v1(k,t).superscript^𝑢𝑘𝑡^italic-ϕ𝑡superscript𝑘2^italic-ϕsubscript𝑣1𝑘𝑡\hat{u}^{*}(k,t)=\dfrac{\partial\hat{\phi}}{\partial t}+k^{2}\hat{\phi}-v_{1}(%k,t).over^ start_ARG italic_u end_ARG start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_k , italic_t ) = divide start_ARG ∂ over^ start_ARG italic_ϕ end_ARG end_ARG start_ARG ∂ italic_t end_ARG + italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) .(24)

Applying the inverse transform (5) to (24), we have

u(x,t)=ϕt(x,t)+eikx[k2ϕ^(k,t)v1(k,t)]dk2π.superscript𝑢𝑥𝑡subscriptitalic-ϕ𝑡𝑥𝑡superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥delimited-[]superscript𝑘2^italic-ϕ𝑘𝑡subscript𝑣1𝑘𝑡d𝑘2𝜋u^{*}(x,t)=\phi_{t}(x,t)+\int_{-\infty}^{\infty}e^{ikx}\left[k^{2}\hat{\phi}(k%,t)-v_{1}(k,t)\right]\frac{\mathop{}\!\mathrm{d}k}{2\pi}.italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) = italic_ϕ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ( italic_x , italic_t ) + ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT [ italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG .(25)

The control law (25) cannot be computed yet since only one of the Dirichlet and Neumann boundary conditions in v1(k,t)subscript𝑣1𝑘𝑡v_{1}(k,t)italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) is provided, i.e., either (g0(t),h0(t))subscript𝑔0𝑡subscript0𝑡(g_{0}(t),h_{0}(t))( italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) ) or (g1(t),h1(t))subscript𝑔1𝑡subscript1𝑡(g_{1}(t),h_{1}(t))( italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) , italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) ) is known.We will derive an expression of u(x,t)superscript𝑢𝑥𝑡u^{*}(x,t)italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) that depends only on given initial and boundary conditions. In the following result, we consider the case that Dirichlet boundary conditions are given:

Theorem 2

Given Dirichlet boundary values g0(t),h0(t)subscript𝑔0𝑡subscript0𝑡g_{0}(t),h_{0}(t)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) for all t>0,𝑡0t>0,italic_t > 0 , the optimal control u(x,t)superscript𝑢𝑥𝑡u^{*}(x,t)italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) in the domain ΩΩ\Omegaroman_Ω is given by

u(x,t)=eikxω(k)tp^(k)ϕ^0(k)dk2πsuperscript𝑢𝑥𝑡superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡^𝑝𝑘subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle u^{*}(x,t)=-\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,\hat{p}(k%)\hat{\phi}_{0}(k)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) = - ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_k ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(26)
+𝒟+eω(k)tp^(k)eikLeikL{2sin(kx)[ieikLϕ^0(k)\displaystyle+\int_{\partial\mathcal{D}^{+}}\dfrac{e^{-\omega(k)t}\hat{p}(k)}{%e^{ikL}-e^{-ikL}}\Big{\{}2\sin(kx)\big{[}ie^{ikL}\hat{\phi}_{0}(k)+ ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_k ) end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT end_ARG { 2 roman_sin ( italic_k italic_x ) [ italic_i italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k )
2k(h~0(ω(k),t))p^(k)h¯0(ω(k),t))]\displaystyle\hskip 36.135pt-2k(\tilde{h}_{0}(\omega(k),t))-\hat{p}(k)\bar{h}_%{0}(\omega(k),t))\big{]}- 2 italic_k ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]
+2sin(k(Lx))[iϕ^0(k)\displaystyle\hskip 36.135pt+2\sin(k(L-x))\big{[}i\hat{\phi}_{0}(-k)+ 2 roman_sin ( italic_k ( italic_L - italic_x ) ) [ italic_i over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k )
2k(g~0(ω(k),t)p^(k)g¯0(ω(k),t)]}dk2π\displaystyle\hskip 36.135pt-2k(\tilde{g}_{0}(\omega(k),t)-\hat{p}(k)\bar{g}_{%0}(\omega(k),t)\big{]}\Big{\}}\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- 2 italic_k ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
𝒟+1eikLeikL{2sin(kx)\displaystyle-\int_{\partial\mathcal{D}^{+}}\dfrac{1}{e^{ikL}-e^{-ikL}}\Big{\{%}2\sin(kx)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT end_ARG { 2 roman_sin ( italic_k italic_x )
[2kh0(t)p^(k)h¯0(ω(k),t)]+2sin(k(Lx))delimited-[]2𝑘subscript0𝑡^𝑝𝑘subscript¯0𝜔𝑘𝑡2𝑘𝐿𝑥\displaystyle\hskip 36.135pt\big{[}-2kh_{0}(t)-\hat{p}(k)\underline{h}_{0}(%\omega(k),t)\big{]}+2\sin(k(L-x))[ - 2 italic_k italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) under¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] + 2 roman_sin ( italic_k ( italic_L - italic_x ) )
[2kg0(t)p^(k)g¯0(ω(k),t)]}dk2π,\displaystyle\hskip 36.135pt\big{[}-2kg_{0}(t)-\hat{p}(k)\underline{g}_{0}(%\omega(k),t)\big{]}\Big{\}}\frac{\mathop{}\!\mathrm{d}k}{2\pi},[ - 2 italic_k italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) under¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG ,

where 𝒟+superscript𝒟\partial\mathcal{D}^{+}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT is a contour in +superscript\mathbb{C}^{+}blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT defined as 𝒟+:={k+:k=|k|eiθ,θ=π/8or7π/8}assignsuperscript𝒟conditional-set𝑘superscriptformulae-sequence𝑘𝑘superscript𝑒𝑖𝜃𝜃𝜋8or7𝜋8\partial\mathcal{D}^{+}:=\{k\in\mathbb{C}^{+}:k=\left|k\right|e^{i\theta},%\theta=\pi/8\text{ or }7\pi/8\}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT := { italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT : italic_k = | italic_k | italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT , italic_θ = italic_π / 8 or 7 italic_π / 8 };

g~0(k,t)subscript~𝑔0𝑘𝑡\displaystyle\tilde{g}_{0}(k,t)over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτg0(τ)dτ,h~0(k,t):=0tekτh0(τ)dτ,formulae-sequenceassignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript𝑔0𝜏differential-d𝜏assignsubscript~0𝑘𝑡superscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript0𝜏differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}g_{0}(\tau)\mathop{}\!\mathrm{d}\tau,\quad%\tilde{h}_{0}(k,t):=\int_{0}^{t}e^{k\tau}h_{0}(\tau)\mathop{}\!\mathrm{d}\tau,:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_τ ) roman_d italic_τ , over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) := ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_τ ) roman_d italic_τ ,(27)
g¯0(k,t)subscript¯𝑔0𝑘𝑡\displaystyle\underline{g}_{0}(k,t)under¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ):=τek(τξ)g0(ξ)dξ,assignabsentsuperscriptsubscript𝜏superscript𝑒𝑘𝜏𝜉subscript𝑔0𝜉differential-d𝜉\displaystyle:=\int_{\tau}^{\infty}e^{k(\tau-\xi)}g_{0}(\xi)\mathop{}\!\mathrm%{d}\xi,:= ∫ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k ( italic_τ - italic_ξ ) end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ ,
h¯0(k,t)subscript¯0𝑘𝑡\displaystyle\underline{h}_{0}(k,t)under¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ):=τek(τξ)h0(ξ)dξ,assignabsentsuperscriptsubscript𝜏superscript𝑒𝑘𝜏𝜉subscript0𝜉differential-d𝜉\displaystyle:=\int_{\tau}^{\infty}e^{k(\tau-\xi)}h_{0}(\xi)\mathop{}\!\mathrm%{d}\xi,:= ∫ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k ( italic_τ - italic_ξ ) end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ ,
g¯0(k,t)subscript¯𝑔0𝑘𝑡\displaystyle\bar{g}_{0}(k,t)over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτg¯0(k,τ)dτ,assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript¯𝑔0𝑘𝜏differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}\underline{g}_{0}(k,\tau)\mathop{}\!%\mathrm{d}\tau,:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT under¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_τ ) roman_d italic_τ ,
h¯0(k,t)subscript¯0𝑘𝑡\displaystyle\bar{h}_{0}(k,t)over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτh¯0(k,τ)dτ.assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript¯0𝑘𝜏differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}\underline{h}_{0}(k,\tau)\mathop{}\!%\mathrm{d}\tau.:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT under¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_τ ) roman_d italic_τ .
Remark 3

The optimal control (26) only depends on given initial and boundary values.Similar expressions can be derived if Neumann boundary values are given.

Proof:

Following (25), the optimal control is computed by taking the time derivative of

ϕ(x,t)=eikxϕ^(k,t)dk2πitalic-ϕ𝑥𝑡superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥^italic-ϕ𝑘𝑡d𝑘2𝜋\displaystyle\phi(x,t)=\int_{-\infty}^{\infty}e^{ikx}\hat{\phi}(k,t)\frac{%\mathop{}\!\mathrm{d}k}{2\pi}italic_ϕ ( italic_x , italic_t ) = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(28)
=eikxω(k)tϕ^0(k)dk2πabsentsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,\hat{\phi}_{0}(k)%\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
𝒟+eω(k)teikLeikL{2sin(kx)[ieikLϕ^0(k)\displaystyle-\int_{\partial\mathcal{D}^{+}}\dfrac{e^{-\omega(k)t}}{e^{ikL}-e^%{-ikL}}\Big{\{}2\sin(kx)\big{[}ie^{ikL}\hat{\phi}_{0}(k)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT end_ARG { 2 roman_sin ( italic_k italic_x ) [ italic_i italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k )
2k(h~0(ω(k),t))p^(k)h¯0(ω(k),t))]\displaystyle\hskip 36.135pt-2k(\tilde{h}_{0}(\omega(k),t))-\hat{p}(k)\bar{h}_%{0}(\omega(k),t))\big{]}- 2 italic_k ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]
+2sin(k(Lx))[iϕ^0(k)\displaystyle\hskip 36.135pt+2\sin(k(L-x))\big{[}i\hat{\phi}_{0}(-k)+ 2 roman_sin ( italic_k ( italic_L - italic_x ) ) [ italic_i over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k )
2k(g~0(ω(k),t)p^(k)g¯0(ω(k),t)]}dk2π\displaystyle\hskip 36.135pt-2k(\tilde{g}_{0}(\omega(k),t)-\hat{p}(k)\bar{g}_{%0}(\omega(k),t)\big{]}\Big{\}}\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- 2 italic_k ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG

plus

eikxk2ϕ^(k,t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2^italic-ϕ𝑘𝑡d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}k^{2}\hat{\phi}(k,t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(29)
=eikxω(k)tk2ϕ^0(k)dk2πabsentsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡superscript𝑘2subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}\hat{\phi}_{0}(k%)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
𝒟+eω(k)tk2eikLeikL{2sin(kx)[ieikLϕ^0(k)\displaystyle-\int_{\partial\mathcal{D}^{+}}\dfrac{e^{-\omega(k)t}k^{2}}{e^{%ikL}-e^{-ikL}}\Big{\{}2\sin(kx)\big{[}ie^{ikL}\hat{\phi}_{0}(k)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT end_ARG { 2 roman_sin ( italic_k italic_x ) [ italic_i italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k )
2k(h~0(ω(k,t))p^(k)h¯0(ω(k),t))]\displaystyle\hskip 36.135pt-2k(\tilde{h}_{0}(\omega(k,t))-\hat{p}(k)\bar{h}_{%0}(\omega(k),t))\big{]}- 2 italic_k ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k , italic_t ) ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]
+2sin(k(Lx))[iϕ^0(k)\displaystyle\hskip 36.135pt+2\sin(k(L-x))\big{[}i\hat{\phi}_{0}(-k)+ 2 roman_sin ( italic_k ( italic_L - italic_x ) ) [ italic_i over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k )
2k(g~0(ω(k),t)p^(k)g¯0(ω(k),t)]}dk2π\displaystyle\hskip 36.135pt-2k(\tilde{g}_{0}(\omega(k),t)-\hat{p}(k)\bar{g}_{%0}(\omega(k),t)\big{]}\Big{\}}\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- 2 italic_k ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG

and the following integral that vanishes for 0<x<L0𝑥𝐿0<x<L0 < italic_x < italic_L:

eikxv1(k,t)dk2π=0,0<x<L.formulae-sequencesuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥subscript𝑣1𝑘𝑡d𝑘2𝜋00𝑥𝐿\int_{-\infty}^{\infty}e^{ikx}v_{1}(k,t)\frac{\mathop{}\!\mathrm{d}k}{2\pi}=0,%\quad 0<x<L.∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG = 0 , 0 < italic_x < italic_L .(30)

We first prove (29) and divide the proof into the following three steps.The proof of (28) follows similarly without the extra k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT term.The proof of (30) is presented at last.

  1. 1.

    Using the transformed optimal control law (22) in (6) and solving the resulting ODE, we obtain the following equation that relates the unified transform of state ϕ^^italic-ϕ\hat{\phi}over^ start_ARG italic_ϕ end_ARG to unified transform of initial value ϕ^0subscript^italic-ϕ0\hat{\phi}_{0}over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and certain transforms of Dirichlet and Neumann boundary values:

    eω(k)tϕ^(k,t)superscript𝑒𝜔𝑘𝑡^italic-ϕ𝑘𝑡\displaystyle e^{\omega(k)t}\hat{\phi}(k,t)italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t )(31)
    =\displaystyle==ϕ^0(k)g~1(ω(k),t)ikg~0(ω(k),t)subscript^italic-ϕ0𝑘subscript~𝑔1𝜔𝑘𝑡𝑖𝑘subscript~𝑔0𝜔𝑘𝑡\displaystyle\hat{\phi}_{0}(k)-\tilde{g}_{1}(\omega(k),t)-ik\tilde{g}_{0}(%\omega(k),t)over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) - over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
    +eikL(h~1(ω(k),t)+ikh~0(ω(k),t))superscript𝑒𝑖𝑘𝐿subscript~1𝜔𝑘𝑡𝑖𝑘subscript~0𝜔𝑘𝑡\displaystyle+e^{-ikL}(\tilde{h}_{1}(\omega(k),t)+ik\tilde{h}_{0}(\omega(k),t))+ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) )
    p^(k)[g¯1(ω(k),t)ikg¯0(ω(k),t)\displaystyle-\hat{p}(k)\big{[}-\bar{g}_{1}(\omega(k),t)-ik\bar{g}_{0}(\omega(%k),t)- over^ start_ARG italic_p end_ARG ( italic_k ) [ - over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
    +eikL(h¯1(ω(k),t)+ikh¯0(ω(k),t))]\displaystyle+e^{-ikL}(\bar{h}_{1}(\omega(k),t)+ik\bar{h}_{0}(\omega(k),t))%\big{]}+ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]

    with (27) and the following

    g~1(k,t)subscript~𝑔1𝑘𝑡\displaystyle\tilde{g}_{1}(k,t)over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτg1(τ)dτ,assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript𝑔1𝜏differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}g_{1}(\tau)\mathop{}\!\mathrm{d}\tau,:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_τ ) roman_d italic_τ ,
    h~1(k,t)subscript~1𝑘𝑡\displaystyle\tilde{h}_{1}(k,t)over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτh1(τ)dτ,assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏subscript1𝜏differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}h_{1}(\tau)\mathop{}\!\mathrm{d}\tau,:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_τ ) roman_d italic_τ ,
    g¯1(k,t)subscript¯𝑔1𝑘𝑡\displaystyle\bar{g}_{1}(k,t)over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτ[τek(τξ)g1(ξ)dξ]dτ,assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏delimited-[]superscriptsubscript𝜏superscript𝑒𝑘𝜏𝜉subscript𝑔1𝜉differential-d𝜉differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}\left[\int_{\tau}^{\infty}e^{k(\tau-\xi)}g%_{1}(\xi)\mathop{}\!\mathrm{d}\xi\right]\mathop{}\!\mathrm{d}\tau,:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT [ ∫ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k ( italic_τ - italic_ξ ) end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ ] roman_d italic_τ ,
    h¯1(k,t)subscript¯1𝑘𝑡\displaystyle\bar{h}_{1}(k,t)over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ):=0tekτ[τek(τξ)h1(ξ)dξ]dτ.assignabsentsuperscriptsubscript0𝑡superscript𝑒𝑘𝜏delimited-[]superscriptsubscript𝜏superscript𝑒𝑘𝜏𝜉subscript1𝜉differential-d𝜉differential-d𝜏\displaystyle:=\int_{0}^{t}e^{k\tau}\left[\int_{\tau}^{\infty}e^{k(\tau-\xi)}h%_{1}(\xi)\mathop{}\!\mathrm{d}\xi\right]\mathop{}\!\mathrm{d}\tau.:= ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k italic_τ end_POSTSUPERSCRIPT [ ∫ start_POSTSUBSCRIPT italic_τ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_k ( italic_τ - italic_ξ ) end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ ] roman_d italic_τ .
    On linear quadratic regulator for the heat equation with general boundary conditions (1)
  2. 2.

    Inserting (31) into the left-hand side of (29) and deforming the real axis to contours in the complex plane ,\mathbb{C},blackboard_C ,we have an integral representation along the contour 𝒟+:={k+:k=|k|eiθ,θ=π/8or7π/8}assignsuperscript𝒟conditional-set𝑘superscriptformulae-sequence𝑘𝑘superscript𝑒𝑖𝜃𝜃𝜋8or7𝜋8\partial\mathcal{D}^{+}:=\{k\in\mathbb{C}^{+}:k=\left|k\right|e^{i\theta},%\theta=\pi/8\text{ or }7\pi/8\}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT := { italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT : italic_k = | italic_k | italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT , italic_θ = italic_π / 8 or 7 italic_π / 8 } as shown in Figure2:

    eikxk2ϕ^(k,t)dk2π=eikxω(k)tk2ϕ^0(k)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2^italic-ϕ𝑘𝑡d𝑘2𝜋superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡superscript𝑘2subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}k^{2}\hat{\phi}(k,t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}\hat{\phi%}_{0}(k)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(32)
    𝒟+eω(k)tk2{eikx[g~1(ω(k),t)+ikg~0(ω(k),t)\displaystyle-\int_{\partial\mathcal{D}^{+}}e^{-\omega(k)t}k^{2}\Big{\{}e^{ikx%}\big{[}\tilde{g}_{1}(\omega(k),t)+ik\tilde{g}_{0}(\omega(k),t)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT { italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT [ over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
    p^(k)(g¯1(ω(k),t)+ikg¯0(ω(k),t))]\displaystyle\hskip 36.135pt-\hat{p}(k)(\bar{g}_{1}(\omega(k),t)+ik\bar{g}_{0}%(\omega(k),t))\big{]}- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]
    +eik(Lx)[h~1(ω(k),t)+ikh~0(ω(k),t)\displaystyle\hskip 36.135pt+e^{ik(L-x)}\big{[}-\tilde{h}_{1}(\omega(k),t)+ik%\tilde{h}_{0}(\omega(k),t)+ italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_L - italic_x ) end_POSTSUPERSCRIPT [ - over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
    p^(k)(h¯1(ω(k),t)+ikh¯0(ω(k),t))]}dk2π\displaystyle\hskip 36.135pt-\hat{p}(k)(-\bar{h}_{1}(\omega(k),t)+ik\bar{h}_{0%}(\omega(k),t))\big{]}\Big{\}}\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- over^ start_ARG italic_p end_ARG ( italic_k ) ( - over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
  3. 3.

    Employing the transformation kk𝑘𝑘k\to-kitalic_k → - italic_k in (31) which leaves ω(k)𝜔𝑘\omega(k)italic_ω ( italic_k ) invariant, we eliminate the transforms of unknown boundary values g1,h1subscript𝑔1subscript1g_{1},h_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT from (32)italic-(32italic-)\eqref{eq:state-after-deform-D+}italic_( italic_) and find

    eikxk2ϕ^(k,t)dk2π=eikxω(k)tk2ϕ^0(k)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2^italic-ϕ𝑘𝑡d𝑘2𝜋superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡superscript𝑘2subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}k^{2}\hat{\phi}(k,t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}\hat{\phi%}_{0}(k)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG = ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(33)
    𝒟+eω(k)tk2eikLeikL{2sin(kx)[ieikLϕ^0(k)\displaystyle-\int_{\partial\mathcal{D}^{+}}\dfrac{e^{-\omega(k)t}k^{2}}{e^{%ikL}-e^{-ikL}}\Big{\{}2\sin(kx)\big{[}ie^{ikL}\hat{\phi}_{0}(k)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT end_ARG { 2 roman_sin ( italic_k italic_x ) [ italic_i italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k )
    2k(h~0(ω(k,t))p^(k)h¯0(ω(k),t))]\displaystyle\hskip 36.135pt-2k(\tilde{h}_{0}(\omega(k,t))-\hat{p}(k)\bar{h}_{%0}(\omega(k),t))\big{]}- 2 italic_k ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k , italic_t ) ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ]
    +2sin(k(Lx))[iϕ^0(k)\displaystyle\hskip 36.135pt+2\sin(k(L-x))\big{[}i\hat{\phi}_{0}(-k)+ 2 roman_sin ( italic_k ( italic_L - italic_x ) ) [ italic_i over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k )
    2k(g~0(ω(k),t)p^(k)g¯0(ω(k),t)]}dk2π\displaystyle\hskip 36.135pt-2k(\tilde{g}_{0}(\omega(k),t)-\hat{p}(k)\bar{g}_{%0}(\omega(k),t)\big{]}\Big{\}}\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- 2 italic_k ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ] } divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG

Proof of 1)

Expanding v1(k,t)subscript𝑣1𝑘𝑡v_{1}(k,t)italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) in (23), we have

ϕ^t+ω(k)ϕ^subscript^italic-ϕ𝑡𝜔𝑘^italic-ϕ\displaystyle\hat{\phi}_{t}+\omega(k)\hat{\phi}over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT + italic_ω ( italic_k ) over^ start_ARG italic_ϕ end_ARG(34)
=g1(t)ikg0(t)+eikL(h1(t)+ikh0(t))absentsubscript𝑔1𝑡𝑖𝑘subscript𝑔0𝑡superscript𝑒𝑖𝑘𝐿subscript1𝑡𝑖𝑘subscript0𝑡\displaystyle=-g_{1}(t)-ikg_{0}(t)+e^{-ikL}\left(h_{1}(t)+ikh_{0}(t)\right)= - italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) - italic_i italic_k italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) + italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) + italic_i italic_k italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) )
p^(k)teω(k)(tξ)[g1(ξ)ikg0(ξ)\displaystyle\quad-\hat{p}(k)\int_{t}^{\infty}e^{\omega(k)(t-\xi)}\big{[}-g_{1%}(\xi)-ikg_{0}(\xi)- over^ start_ARG italic_p end_ARG ( italic_k ) ∫ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) ( italic_t - italic_ξ ) end_POSTSUPERSCRIPT [ - italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ξ ) - italic_i italic_k italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ )
+eikL(h1(ξ)+ikh0(ξ))]dξ.\displaystyle\hskip 108.405pt+e^{-ikL}\left(h_{1}(\xi)+ikh_{0}(\xi)\right)\big%{]}\mathop{}\!\mathrm{d}\xi.+ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ξ ) + italic_i italic_k italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) ) ] roman_d italic_ξ .

Solving (34), we have the relation (31).

Proof of 2)

Inserting (31) into the left-hand side of (29), we find

eikxk2ϕ^(k,t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2^italic-ϕ𝑘𝑡d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}k^{2}\hat{\phi}(k,t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(35)
=eikxω(k)tk2ϕ^0(k)dk2πabsentsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡superscript𝑘2subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}\hat{\phi}_{0}(k%)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
eikxω(k)tk2[g~1(ω(k),t)+ikg~0(ω(k),t)\displaystyle\quad-\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}[\tilde{g}_%{1}(\omega(k),t)+ik\tilde{g}_{0}(\omega(k),t)- ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
p^(k)(g¯1(ω(k),t)+ikg¯0(ω(k),t))]dk2π\displaystyle\qquad-\hat{p}(k)(\bar{g}_{1}(\omega(k),t)+ik\bar{g}_{0}(\omega(k%),t))]\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
+eik(Lx)ω(k)tk2[h~1(ω(k),t)+ikh~0(ω(k),t)\displaystyle\quad+\int_{-\infty}^{\infty}e^{-ik(L-x)-\omega(k)t}\,k^{2}[%\tilde{h}_{1}(\omega(k),t)+ik\tilde{h}_{0}(\omega(k),t)+ ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k ( italic_L - italic_x ) - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
p^(k)(h¯1(ω(k),t)+ikh¯0(ω(k),t))]dk2π\displaystyle\qquad-\hat{p}(k)(\bar{h}_{1}(\omega(k),t)+ik\bar{h}_{0}(\omega(k%),t))]\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG

The second and third integrals involve unknown functions g1subscript𝑔1g_{1}italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h1subscript1h_{1}italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT; thus, it is hard to evaluate directly. Now, we show that the real axis in the integral can be deformed to specific contours in the complex domain using Lemmas3 and4. Then, we will see in Step 3 that the contribution from unknown functions to the integrals vanishes.

To use Lemma3, we first establish the analyticity of the integrand in (37).It suffices to analyze the analyticity of ω(k)=k4+1𝜔𝑘superscript𝑘41\omega(k)=\sqrt{k^{4}+1}italic_ω ( italic_k ) = square-root start_ARG italic_k start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT + 1 end_ARG since the other exponential and polynomial functions of k𝑘kitalic_k in (37) are entire functions (analytic everywhere on \mathbb{C}blackboard_C).The function ω(k)𝜔𝑘\omega(k)italic_ω ( italic_k ) is analytic on the entire complex plane excluding the branch cuts {θ=±π/4or±3π/4,|k|1}formulae-sequence𝜃plus-or-minusplus-or-minus𝜋4or3𝜋4𝑘1\{\theta=\pm\pi/4\text{ or}\pm 3\pi/4,\left|k\right|\geq 1\}{ italic_θ = ± italic_π / 4 or ± 3 italic_π / 4 , | italic_k | ≥ 1 } where ω(k)𝜔𝑘\omega(k)italic_ω ( italic_k ) is multi-valued.

Then, we rewrite the integrand as eikxG(k;t)superscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡e^{ikx}G(k;t)italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) with

G(k;t):=eω(k)tk2[\displaystyle G(k;t):=e^{-\omega(k)t}k^{2}\big{[}italic_G ( italic_k ; italic_t ) := italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [g~1(ω(k),t)+ikg~0(ω(k),t)subscript~𝑔1𝜔𝑘𝑡𝑖𝑘subscript~𝑔0𝜔𝑘𝑡\displaystyle\tilde{g}_{1}(\omega(k),t)+ik\tilde{g}_{0}(\omega(k),t)over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
p^(k)(g¯1(ω(k),t)+ikg¯0(ω(k),t))],\displaystyle-\hat{p}(k)(\bar{g}_{1}(\omega(k),t)+ik\bar{g}_{0}(\omega(k),t))%\big{]},- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] ,

and find the conditions under which G(k;t)𝐺𝑘𝑡G(k;t)italic_G ( italic_k ; italic_t ) goes to zero as |k|𝑘|k|\to\infty| italic_k | → ∞ to use Lemma4.The t𝑡titalic_t-transforms of boundary values g~1,g~0,g¯1,g¯0subscript~𝑔1subscript~𝑔0subscript¯𝑔1subscript¯𝑔0\tilde{g}_{1},\tilde{g}_{0},\bar{g}_{1},\bar{g}_{0}over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT contain the term exp[ω(k)τ]𝜔𝑘𝜏\exp[\omega(k)\tau]roman_exp [ italic_ω ( italic_k ) italic_τ ] where τ<t𝜏𝑡\tau<titalic_τ < italic_t. When multiplied by exp[ω(k)t]𝜔𝑘𝑡\exp[-\omega(k)t]roman_exp [ - italic_ω ( italic_k ) italic_t ], it follows that exp[ω(k)(tτ)]𝜔𝑘𝑡𝜏\exp[-\omega(k)(t-\tau)]roman_exp [ - italic_ω ( italic_k ) ( italic_t - italic_τ ) ] decays exponentially provided that Re[ω(k)]>0Redelimited-[]𝜔𝑘0\text{Re}[\omega(k)]>0Re [ italic_ω ( italic_k ) ] > 0.Re[ω(k)]Redelimited-[]𝜔𝑘\text{Re}[\omega(k)]Re [ italic_ω ( italic_k ) ] is positive on the complex plane, excluding the branch cuts for ω(k)𝜔𝑘\omega(k)italic_ω ( italic_k ). Since the polynomial growth of k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT will be cancelled by the exponential decay of exp[ω(k)(tτ)]𝜔𝑘𝑡𝜏\exp[-\omega(k)(t-\tau)]roman_exp [ - italic_ω ( italic_k ) ( italic_t - italic_τ ) ], G(k;t)0𝐺𝑘𝑡0G(k;t)\to 0italic_G ( italic_k ; italic_t ) → 0 as |k|𝑘\left|k\right|\to\infty| italic_k | → ∞ if π/4<θ<π/4𝜋4𝜃𝜋4-\pi/4<\theta<\pi/4- italic_π / 4 < italic_θ < italic_π / 4 and 3π/4<θ<5π/43𝜋4𝜃5𝜋43\pi/4<\theta<5\pi/43 italic_π / 4 < italic_θ < 5 italic_π / 4.

On linear quadratic regulator for the heat equation with general boundary conditions (2)

Without loss of generality, let 𝒟+:={k+:k=|k|eiθ,π/8<θ<7π/8}assignsuperscript𝒟conditional-set𝑘superscriptformulae-sequence𝑘𝑘superscript𝑒𝑖𝜃𝜋8𝜃7𝜋8\mathcal{D}^{+}:=\{k\in\mathbb{C}^{+}:k=|k|e^{i\theta},\pi/8<\theta<7\pi/8\}caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT := { italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT : italic_k = | italic_k | italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT , italic_π / 8 < italic_θ < 7 italic_π / 8 }, 𝒟+:={k+:k=|k|eiθ,θ=π/8or7π/8}assignsuperscript𝒟conditional-set𝑘superscriptformulae-sequence𝑘𝑘superscript𝑒𝑖𝜃𝜃𝜋8or7𝜋8\partial\mathcal{D}^{+}:=\{k\in\mathbb{C}^{+}:k=\left|k\right|e^{i\theta},%\theta=\pi/8\text{ or }7\pi/8\}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT := { italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT : italic_k = | italic_k | italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT , italic_θ = italic_π / 8 or 7 italic_π / 8 } with direction from left to right. In general, D+superscript𝐷\partial D^{+}∂ italic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT can be any two rays in +superscript\mathbb{C}^{+}blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT with 0<θ<π/40𝜃𝜋40<\theta<\pi/40 < italic_θ < italic_π / 4 and 3π/4<θ<π3𝜋4𝜃𝜋3\pi/4<\theta<\pi3 italic_π / 4 < italic_θ < italic_π.Consider a contour 𝒞=[R,R]𝒞R2𝒟+𝒞R1𝒞𝑅𝑅subscript𝒞subscript𝑅2superscript𝒟subscript𝒞subscript𝑅1\mathcal{C}=[-R,R]\cup\mathcal{C}_{R_{2}}\cup\partial\mathcal{D}^{+}\cup%\mathcal{C}_{R_{1}}caligraphic_C = [ - italic_R , italic_R ] ∪ caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∪ ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ∪ caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT shown in Figure2.From Lemma3 and the analyticity of the integrand eikxG(k;t)superscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡e^{ikx}G(k;t)italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) in the domain enclosed by 𝒞𝒞\mathcal{C}caligraphic_C, we have

𝒞eikxG(k;t)dksubscript𝒞superscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡differential-d𝑘\displaystyle\int_{\mathcal{C}}e^{ikx}G(k;t)\mathop{}\!\mathrm{d}k∫ start_POSTSUBSCRIPT caligraphic_C end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) roman_d italic_k(36)
=\displaystyle==(RR+𝒞R2𝒟++𝒞R1)eikxG(k;t)dk=0.superscriptsubscript𝑅𝑅subscriptsubscript𝒞subscript𝑅2subscriptsuperscript𝒟subscriptsubscript𝒞subscript𝑅1superscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡d𝑘0\displaystyle\left(\int_{-R}^{R}+\int_{\mathcal{C}_{R_{2}}}-\int_{\partial%\mathcal{D}^{+}}+\int_{\mathcal{C}_{R_{1}}}\right)e^{ikx}G(k;t)\mathop{}\!%\mathrm{d}k=0.( ∫ start_POSTSUBSCRIPT - italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_R end_POSTSUPERSCRIPT + ∫ start_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT - ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT + ∫ start_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) roman_d italic_k = 0 .

Taking the limit R𝑅R\to\inftyitalic_R → ∞, the integrals over 𝒞R1subscript𝒞subscript𝑅1\mathcal{C}_{R_{1}}caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝒞R2subscript𝒞subscript𝑅2\mathcal{C}_{R_{2}}caligraphic_C start_POSTSUBSCRIPT italic_R start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT vanish according to Lemma4. Therefore,eikxG(k;t)dk=𝒟+eikxG(k;t)dksuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡differential-d𝑘subscriptsuperscript𝒟superscript𝑒𝑖𝑘𝑥𝐺𝑘𝑡differential-d𝑘\int_{-\infty}^{\infty}e^{ikx}G(k;t)\mathop{}\!\mathrm{d}k=\int_{\partial%\mathcal{D}^{+}}e^{ikx}G(k;t)\mathop{}\!\mathrm{d}k∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) roman_d italic_k = ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_G ( italic_k ; italic_t ) roman_d italic_k. Repeat the analysis for the third integral in (35) and replace 𝒟+superscript𝒟\partial\mathcal{D}^{+}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT by 𝒟superscript𝒟\partial\mathcal{D}^{-}∂ caligraphic_D start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT that is defined by 𝒟:={k:k=|k|eiθ,θ=π/8or7π/8}assignsuperscript𝒟conditional-set𝑘superscriptformulae-sequence𝑘𝑘superscript𝑒𝑖𝜃𝜃𝜋8or7𝜋8\partial\mathcal{D}^{-}:=\{k\in\mathbb{C}^{-}:k=\left|k\right|e^{i\theta},%\theta=-\pi/8\text{ or}-7\pi/8\}∂ caligraphic_D start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT := { italic_k ∈ blackboard_C start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT : italic_k = | italic_k | italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT , italic_θ = - italic_π / 8 or - 7 italic_π / 8 }, we have:

eikxk2ϕ^(k,t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2^italic-ϕ𝑘𝑡d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}k^{2}\hat{\phi}(k,t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(37)
=eikxω(k)tk2ϕ^0(k)dk2πabsentsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡superscript𝑘2subscript^italic-ϕ0𝑘d𝑘2𝜋\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,k^{2}\hat{\phi}_{0}(k%)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
𝒟+eikxω(k)tk2[g~1(ω(k),t)+ikg~0(ω(k),t)\displaystyle\quad-\int_{\partial\mathcal{D}^{+}}e^{ikx-\omega(k)t}\,k^{2}[%\tilde{g}_{1}(\omega(k),t)+ik\tilde{g}_{0}(\omega(k),t)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
p^(k)(g¯1(ω(k),t)+ikg¯0(ω(k),t))]dk2π\displaystyle\qquad-\hat{p}(k)(\bar{g}_{1}(\omega(k),t)+ik\bar{g}_{0}(\omega(k%),t))]\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
𝒟eik(Lx)ω(k)tk2[h~1(ω(k),t)+ikh~0(ω(k),t)\displaystyle\quad-\int_{\partial\mathcal{D}^{-}}e^{-ik(L-x)-\omega(k)t}\,k^{2%}[\tilde{h}_{1}(\omega(k),t)+ik\tilde{h}_{0}(\omega(k),t)- ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT - end_POSTSUPERSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT - italic_i italic_k ( italic_L - italic_x ) - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT [ over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
p^(k)(h¯1(ω(k),t)+ikh¯0(ω(k),t))]dk2π.\displaystyle\qquad-\hat{p}(k)(\bar{h}_{1}(\omega(k),t)+ik\bar{h}_{0}(\omega(k%),t))]\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}.- over^ start_ARG italic_p end_ARG ( italic_k ) ( over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG .

Using the transformation kk𝑘𝑘k\to-kitalic_k → - italic_k in the third integral on the right-hand side of (37), we find that this equation becomes (32).

Proof of 3)

We show that the transforms of unknown boundary values can be eliminated in (32).Note that ω(k)=ω(k)𝜔𝑘𝜔𝑘\omega(-k)=\omega(k)italic_ω ( - italic_k ) = italic_ω ( italic_k ), we obtain the following equation from the relation (31) by transforming kk𝑘𝑘k\to-kitalic_k → - italic_k:

eω(k)tϕ^(k,t)superscript𝑒𝜔𝑘𝑡^italic-ϕ𝑘𝑡\displaystyle e^{\omega(k)t}\hat{\phi}(-k,t)italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t )(38)
=\displaystyle==ϕ^0(k)g~1(ω(k),t)+ikg~0(ω(k),t)subscript^italic-ϕ0𝑘subscript~𝑔1𝜔𝑘𝑡𝑖𝑘subscript~𝑔0𝜔𝑘𝑡\displaystyle\hat{\phi}_{0}(-k)-\tilde{g}_{1}(\omega(k),t)+ik\tilde{g}_{0}(%\omega(k),t)over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k ) - over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
+eikL(h~1(ω(k),t)ikh~0(ω(k),t))superscript𝑒𝑖𝑘𝐿subscript~1𝜔𝑘𝑡𝑖𝑘subscript~0𝜔𝑘𝑡\displaystyle+e^{ikL}(\tilde{h}_{1}(\omega(k),t)-ik\tilde{h}_{0}(\omega(k),t))+ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - italic_i italic_k over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) )
p^(k)[g¯1(ω(k),t)+ikg¯0(ω(k),t)\displaystyle-\hat{p}(k)\big{[}-\bar{g}_{1}(\omega(k),t)+ik\bar{g}_{0}(\omega(%k),t)- over^ start_ARG italic_p end_ARG ( italic_k ) [ - over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) + italic_i italic_k over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t )
+eikL(h¯1(ω(k),t)ikh¯0(ω(k),t))].\displaystyle+e^{ikL}(\bar{h}_{1}(\omega(k),t)-ik\bar{h}_{0}(\omega(k),t))\big%{]}.+ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) - italic_i italic_k over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ω ( italic_k ) , italic_t ) ) ] .

In the case that g0(t),h0(t)subscript𝑔0𝑡subscript0𝑡g_{0}(t),h_{0}(t)italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) , italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) are given, (38) and (31) become, respectively,

eω(k)tϕ^(k,t)superscript𝑒𝜔𝑘𝑡^italic-ϕ𝑘𝑡\displaystyle e^{\omega(k)t}\hat{\phi}(k,t)italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t )=G0(k,t)(g~1p^(k)g¯1)absentsubscript𝐺0𝑘𝑡subscript~𝑔1^𝑝𝑘subscript¯𝑔1\displaystyle=G_{0}(k,t)-(\tilde{g}_{1}-\hat{p}(k)\bar{g}_{1})= italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) - ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )(39)
+eikL(h~1p^(k)h¯1),superscript𝑒𝑖𝑘𝐿subscript~1^𝑝𝑘subscript¯1\displaystyle\hskip 46.97505pt+e^{-ikL}(\tilde{h}_{1}-\hat{p}(k)\bar{h}_{1}),+ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,
eω(k)tϕ^(k,t)superscript𝑒𝜔𝑘𝑡^italic-ϕ𝑘𝑡\displaystyle e^{\omega(k)t}\hat{\phi}(-k,t)italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t )=G0(k,t)(g~1p^(k)g¯1)absentsubscript𝐺0𝑘𝑡subscript~𝑔1^𝑝𝑘subscript¯𝑔1\displaystyle=G_{0}(-k,t)-(\tilde{g}_{1}-\hat{p}(k)\bar{g}_{1})= italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k , italic_t ) - ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )
+eikL(h~1p^(k)h¯1),superscript𝑒𝑖𝑘𝐿subscript~1^𝑝𝑘subscript¯1\displaystyle\hskip 54.2025pt+e^{ikL}(\tilde{h}_{1}-\hat{p}(k)\bar{h}_{1}),+ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ,

where the known function G0(k,t)subscript𝐺0𝑘𝑡G_{0}(k,t)italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) is defined by

G0(k,t):=ϕ^0(k)ik(g~0p^(k)g¯0)+ikeikL(h~0p^(k)h¯0).assignsubscript𝐺0𝑘𝑡subscript^italic-ϕ0𝑘𝑖𝑘subscript~𝑔0^𝑝𝑘subscript¯𝑔0𝑖𝑘superscript𝑒𝑖𝑘𝐿subscript~0^𝑝𝑘subscript¯0G_{0}(k,t):=\hat{\phi}_{0}(k)-ik(\tilde{g}_{0}-\hat{p}(k)\bar{g}_{0})+ike^{-%ikL}(\tilde{h}_{0}-\hat{p}(k)\bar{h}_{0}).italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) := over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) - italic_i italic_k ( over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) + italic_i italic_k italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ( over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) .

Solving (39) for terms containing unknown boundary values, we find

g~1p^(k)g¯1subscript~𝑔1^𝑝𝑘subscript¯𝑔1\displaystyle\tilde{g}_{1}-\hat{p}(k)\bar{g}_{1}over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=1Δ(k)[eikLG0(k,t)eikLG0(k,t)]absent1Δ𝑘delimited-[]superscript𝑒𝑖𝑘𝐿subscript𝐺0𝑘𝑡superscript𝑒𝑖𝑘𝐿subscript𝐺0𝑘𝑡\displaystyle=\frac{1}{\Delta(k)}\left[e^{ikL}G_{0}(k,t)-e^{-ikL}G_{0}(-k,t)\right]= divide start_ARG 1 end_ARG start_ARG roman_Δ ( italic_k ) end_ARG [ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k , italic_t ) ]
+eω(k)tgˇ1,superscript𝑒𝜔𝑘𝑡subscriptˇ𝑔1\displaystyle\hskip 133.69994pt+e^{\omega(k)t}\check{g}_{1},+ italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ,
h~1p^(k)h¯1subscript~1^𝑝𝑘subscript¯1\displaystyle\tilde{h}_{1}-\hat{p}(k)\bar{h}_{1}over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=1Δ(k)[G0(k,t)G0(k,t)]+eω(k)thˇ1,absent1Δ𝑘delimited-[]subscript𝐺0𝑘𝑡subscript𝐺0𝑘𝑡superscript𝑒𝜔𝑘𝑡subscriptˇ1\displaystyle=\frac{1}{\Delta(k)}\left[G_{0}(k,t)-G_{0}(-k,t)\right]+e^{\omega%(k)t}\check{h}_{1},= divide start_ARG 1 end_ARG start_ARG roman_Δ ( italic_k ) end_ARG [ italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k , italic_t ) - italic_G start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k , italic_t ) ] + italic_e start_POSTSUPERSCRIPT italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ,

whereΔ(k):=eikLeikL,assignΔ𝑘superscript𝑒𝑖𝑘𝐿superscript𝑒𝑖𝑘𝐿\Delta(k):=e^{ikL}-e^{-ikL},roman_Δ ( italic_k ) := italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT ,and gˇ1,hˇ1subscriptˇ𝑔1subscriptˇ1\check{g}_{1},\check{h}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , overroman_ˇ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT contain the terms ϕ^(k,t)^italic-ϕ𝑘𝑡\hat{\phi}(k,t)over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) and ϕ^(k,t)^italic-ϕ𝑘𝑡\hat{\phi}(-k,t)over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t ):

gˇ1subscriptˇ𝑔1\displaystyle\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=1Δ(k)[eikLϕ^(k,t)eikLϕ^(k,t)],absent1Δ𝑘delimited-[]superscript𝑒𝑖𝑘𝐿^italic-ϕ𝑘𝑡superscript𝑒𝑖𝑘𝐿^italic-ϕ𝑘𝑡\displaystyle=-\frac{1}{\Delta(k)}\left[e^{ikL}\hat{\phi}(k,t)-e^{-ikL}\hat{%\phi}(-k,t)\right],= - divide start_ARG 1 end_ARG start_ARG roman_Δ ( italic_k ) end_ARG [ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t ) ] ,
hˇ1subscriptˇ1\displaystyle\check{h}_{1}overroman_ˇ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT=1Δ(k)[ϕ^(k,t)ϕ^(k,t)].absent1Δ𝑘delimited-[]^italic-ϕ𝑘𝑡^italic-ϕ𝑘𝑡\displaystyle=-\frac{1}{\Delta(k)}\left[\hat{\phi}(k,t)-\hat{\phi}(-k,t)\right].= - divide start_ARG 1 end_ARG start_ARG roman_Δ ( italic_k ) end_ARG [ over^ start_ARG italic_ϕ end_ARG ( italic_k , italic_t ) - over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t ) ] .

Inserting the expressions for g~1p^(k)g¯1subscript~𝑔1^𝑝𝑘subscript¯𝑔1\tilde{g}_{1}-\hat{p}(k)\bar{g}_{1}over~ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and h~1p^(k)h¯1subscript~1^𝑝𝑘subscript¯1\tilde{h}_{1}-\hat{p}(k)\bar{h}_{1}over~ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - over^ start_ARG italic_p end_ARG ( italic_k ) over¯ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in (32) and simplifying, we find (33) plus the following term that vanishes:

𝒟+[eikxk2gˇ1(k,t)eik(Lx)k2hˇ1(k,t)]dk2π.subscriptsuperscript𝒟delimited-[]superscript𝑒𝑖𝑘𝑥superscript𝑘2subscriptˇ𝑔1𝑘𝑡superscript𝑒𝑖𝑘𝐿𝑥superscript𝑘2subscriptˇ1𝑘𝑡d𝑘2𝜋\int_{\partial\mathcal{D}^{+}}\left[e^{ikx}k^{2}\check{g}_{1}(k,t)-e^{ik(L-x)}%k^{2}\check{h}_{1}(k,t)\right]\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}.∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT [ italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) - italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_L - italic_x ) end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) ] divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG .(40)
On linear quadratic regulator for the heat equation with general boundary conditions (3)

To show that the integral (40) vanishes, we analyze the behavior of the integrand as |k|𝑘|k|\to\infty| italic_k | → ∞. Δ(k)eikLsimilar-toΔ𝑘superscript𝑒𝑖𝑘𝐿\Delta(k)\sim e^{-ikL}roman_Δ ( italic_k ) ∼ italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_L end_POSTSUPERSCRIPT since the exponential term eikL=e(ikRkI)Lsuperscript𝑒𝑖𝑘𝐿superscript𝑒𝑖subscript𝑘𝑅subscript𝑘𝐼𝐿e^{ikL}=e^{(ik_{R}-k_{I})L}italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT = italic_e start_POSTSUPERSCRIPT ( italic_i italic_k start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT - italic_k start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT ) italic_L end_POSTSUPERSCRIPT decays for k+𝑘superscriptk\in\mathbb{C}^{+}italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT using the definition k=kR+ikI𝑘subscript𝑘𝑅𝑖subscript𝑘𝐼k=k_{R}+ik_{I}italic_k = italic_k start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT + italic_i italic_k start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT with kI>0subscript𝑘𝐼0k_{I}>0italic_k start_POSTSUBSCRIPT italic_I end_POSTSUBSCRIPT > 0. Hence,

gˇ1ϕ^(k,t)+eikL0Leik(Lx)ϕ(x,t)dx,|k|.formulae-sequencesimilar-tosubscriptˇ𝑔1^italic-ϕ𝑘𝑡superscript𝑒𝑖𝑘𝐿superscriptsubscript0𝐿superscript𝑒𝑖𝑘𝐿𝑥italic-ϕ𝑥𝑡differential-d𝑥𝑘\check{g}_{1}\sim-\hat{\phi}(-k,t)+e^{ikL}\int_{0}^{L}e^{ik(L-x)}\phi(x,t)%\mathop{}\!\mathrm{d}x,\quad|k|\to\infty.overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∼ - over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t ) + italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_L end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_L - italic_x ) end_POSTSUPERSCRIPT italic_ϕ ( italic_x , italic_t ) roman_d italic_x , | italic_k | → ∞ .

eik(Lx),eikLsuperscript𝑒𝑖𝑘𝐿𝑥superscript𝑒𝑖𝑘𝐿e^{ik(L-x)},e^{ikL}italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_L - italic_x ) end_POSTSUPERSCRIPT , italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_L end_POSTSUPERSCRIPT, and ϕ^(k,t)^italic-ϕ𝑘𝑡\hat{\phi}(-k,t)over^ start_ARG italic_ϕ end_ARG ( - italic_k , italic_t ) all contain the exponential eikλsuperscript𝑒𝑖𝑘𝜆e^{ik\lambda}italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_λ end_POSTSUPERSCRIPT where λ>0𝜆0\lambda>0italic_λ > 0 that decays in +superscript\mathbb{C}^{+}blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. Therefore, gˇ10subscriptˇ𝑔10\check{g}_{1}\to 0overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → 0 as |k|𝑘|k|\to\infty| italic_k | → ∞ for k+𝑘superscriptk\in\mathbb{C}^{+}italic_k ∈ blackboard_C start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT.

Consider a closed curve =𝒟+Rsubscriptsuperscript𝒟subscript𝑅\mathcal{L}=\mathcal{L}_{\partial\mathcal{D}^{+}}\cup\mathcal{L}_{R}caligraphic_L = caligraphic_L start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ∪ caligraphic_L start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT, where 𝒟+=𝒟+{k:|k|<R}subscriptsuperscript𝒟superscript𝒟conditional-set𝑘𝑘𝑅\mathcal{L}_{\partial\mathcal{D}^{+}}=\partial\mathcal{D}^{+}\cap\{k:|k|<R\}caligraphic_L start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT ∩ { italic_k : | italic_k | < italic_R } and R={k𝒟+:|k|=R}subscript𝑅conditional-set𝑘superscript𝒟𝑘𝑅\mathcal{L}_{R}=\{k\in\mathcal{D}^{+}:|k|=R\}caligraphic_L start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT = { italic_k ∈ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT : | italic_k | = italic_R }, see Figure3.Note that the pole k=0𝑘0k=0italic_k = 0 of gˇ1subscriptˇ𝑔1\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a removable singularity, and we can redefine the value of gˇ1subscriptˇ𝑔1\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT at k=0𝑘0k=0italic_k = 0 to make gˇ1subscriptˇ𝑔1\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT analytic. From Lemma3, we have

eikxk2gˇ1(k,t)dksubscriptsuperscript𝑒𝑖𝑘𝑥superscript𝑘2subscriptˇ𝑔1𝑘𝑡differential-d𝑘\displaystyle\int_{\mathcal{L}}e^{ikx}k^{2}\check{g}_{1}(k,t)\mathop{}\!%\mathrm{d}k∫ start_POSTSUBSCRIPT caligraphic_L end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) roman_d italic_k(41)
=\displaystyle==𝒟+eikxk2gˇ1(k,t)dk+Reikxk2gˇ1(k,t)dk=0.subscriptsubscriptsuperscript𝒟superscript𝑒𝑖𝑘𝑥superscript𝑘2subscriptˇ𝑔1𝑘𝑡differential-d𝑘subscriptsubscript𝑅superscript𝑒𝑖𝑘𝑥superscript𝑘2subscriptˇ𝑔1𝑘𝑡differential-d𝑘0\displaystyle\int_{\mathcal{L}_{\partial\mathcal{D}^{+}}}e^{ikx}k^{2}\check{g}%_{1}(k,t)\mathop{}\!\mathrm{d}k+\int_{\mathcal{L}_{R}}e^{ikx}k^{2}\check{g}_{1%}(k,t)\mathop{}\!\mathrm{d}k=0.∫ start_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) roman_d italic_k + ∫ start_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) roman_d italic_k = 0 .

The integral along Rsubscript𝑅\mathcal{L}_{R}caligraphic_L start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT vanishes as R𝑅R\to\inftyitalic_R → ∞ according to Lemma4 and the fact that k2gˇ10superscript𝑘2subscriptˇ𝑔10k^{2}\check{g}_{1}\to 0italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT → 0 as R𝑅R\to\inftyitalic_R → ∞ since the exponential decay of gˇ1subscriptˇ𝑔1\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT cancels the polynomial growth of k2superscript𝑘2k^{2}italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.From (41), the integral along 𝒟+subscriptsuperscript𝒟\mathcal{L}_{\partial\mathcal{D}^{+}}caligraphic_L start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT also goes to zero as R𝑅R\to\inftyitalic_R → ∞.Since 𝒟+subscriptsuperscript𝒟\mathcal{L}_{\partial\mathcal{D}^{+}}caligraphic_L start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT end_POSTSUBSCRIPT converges to 𝒟+superscript𝒟\partial\mathcal{D}^{+}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT as R𝑅R\to\inftyitalic_R → ∞, the contribution from gˇ1subscriptˇ𝑔1\check{g}_{1}overroman_ˇ start_ARG italic_g end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to the integral (40) vanishes.Similarly, the contribution from hˇ1subscriptˇ1\check{h}_{1}overroman_ˇ start_ARG italic_h end_ARG start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT to the integral (40) also vanishes.Therefore, the value of the integral (40) is zero.

Lastly, we show that (30) holds. Using the definition of v1subscript𝑣1v_{1}italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT in (7), the left-hand side of (30) can be expanded as

eikxv1(k,t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥subscript𝑣1𝑘𝑡d𝑘2𝜋\displaystyle\int_{-\infty}^{\infty}e^{ikx}v_{1}(k,t)\frac{\mathop{}\!\mathrm{%d}k}{2\pi}∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_k , italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG(42)
=\displaystyle==eikxg1(t)dk2πeikxikg0(t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥subscript𝑔1𝑡d𝑘2𝜋superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝑖𝑘subscript𝑔0𝑡d𝑘2𝜋\displaystyle-\int_{-\infty}^{\infty}e^{ikx}g_{1}(t)\frac{\mathop{}\!\mathrm{d%}k}{2\pi}-\int_{-\infty}^{\infty}e^{ikx}ikg_{0}(t)\frac{\mathop{}\!\mathrm{d}k%}{2\pi}- ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG - ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x end_POSTSUPERSCRIPT italic_i italic_k italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
+eik(xL)h1(t)dk2π+eik(xL)ikh0(t)dk2πsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝐿subscript1𝑡d𝑘2𝜋superscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝐿𝑖𝑘subscript0𝑡d𝑘2𝜋\displaystyle+\int_{-\infty}^{\infty}e^{ik(x-L)}h_{1}(t)\frac{\mathop{}\!%\mathrm{d}k}{2\pi}+\int_{-\infty}^{\infty}e^{ik(x-L)}ikh_{0}(t)\frac{\mathop{}%\!\mathrm{d}k}{2\pi}+ ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_x - italic_L ) end_POSTSUPERSCRIPT italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG + ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_x - italic_L ) end_POSTSUPERSCRIPT italic_i italic_k italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
=\displaystyle==g1(t)δ(x)g0(t)δ(x)subscript𝑔1𝑡𝛿𝑥subscript𝑔0𝑡superscript𝛿𝑥\displaystyle-g_{1}(t)\delta(x)-g_{0}(t)\delta^{\prime}(x)- italic_g start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) italic_δ ( italic_x ) - italic_g start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x )
+h1(t)δ(xL)+h0(t)δ(xL),subscript1𝑡𝛿𝑥𝐿subscript0𝑡superscript𝛿𝑥𝐿\displaystyle+h_{1}(t)\delta(x-L)+h_{0}(t)\delta^{\prime}(x-L),+ italic_h start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_t ) italic_δ ( italic_x - italic_L ) + italic_h start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_t ) italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( italic_x - italic_L ) ,

where δ()𝛿\delta(\cdot)italic_δ ( ⋅ ) is the Dirac delta function, and δ()superscript𝛿\delta^{\prime}(\cdot)italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ⋅ ) is the first derivative of the Dirac delta function. Both δ()𝛿\delta(\cdot)italic_δ ( ⋅ ) and δ()superscript𝛿\delta^{\prime}(\cdot)italic_δ start_POSTSUPERSCRIPT ′ end_POSTSUPERSCRIPT ( ⋅ ) vanish except at the origin, which gives (30)italic-(30italic-)\eqref{eq:inverse-transform-boundary}italic_( italic_) for 0<x<L0𝑥𝐿0<x<L0 < italic_x < italic_L.∎

On linear quadratic regulator for the heat equation with general boundary conditions (4)
On linear quadratic regulator for the heat equation with general boundary conditions (5)
On linear quadratic regulator for the heat equation with general boundary conditions (6)

VI Comparison to existing optimal control

VI-A Equivalent series representations

Consider the heat equation in (1) with L=π𝐿𝜋L=\piitalic_L = italic_π and hom*ogeneous Dirichlet boundary conditions, i.e., ϕ(0,t)=ϕ(π,t)=0italic-ϕ0𝑡italic-ϕ𝜋𝑡0\phi(0,t)=\phi(\pi,t)=0italic_ϕ ( 0 , italic_t ) = italic_ϕ ( italic_π , italic_t ) = 0. In this setting, an existing optimal control in [6] has a convolution form:

uconv(x,t)=0π(Γ(xξ)Γ(x+ξ))ϕ(ξ,t)dξ2πsubscriptsuperscript𝑢conv𝑥𝑡superscriptsubscript0𝜋Γ𝑥𝜉Γ𝑥𝜉italic-ϕ𝜉𝑡d𝜉2𝜋u^{*}_{\text{conv}}(x,t)=\int_{0}^{\pi}\left(\Gamma(x-\xi)-\Gamma(x+\xi)\right%)\phi(\xi,t)\frac{\mathop{}\!\mathrm{d}\xi}{2\pi}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT conv end_POSTSUBSCRIPT ( italic_x , italic_t ) = ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT ( roman_Γ ( italic_x - italic_ξ ) - roman_Γ ( italic_x + italic_ξ ) ) italic_ϕ ( italic_ξ , italic_t ) divide start_ARG roman_d italic_ξ end_ARG start_ARG 2 italic_π end_ARG(43)

with

Γ(x)=12πn=p^(n)einx.Γ𝑥12𝜋superscriptsubscript𝑛^𝑝𝑛superscript𝑒𝑖𝑛𝑥\Gamma(x)=\frac{1}{2\pi}\sum_{n=-\infty}^{\infty}\hat{p}(n)e^{inx}.roman_Γ ( italic_x ) = divide start_ARG 1 end_ARG start_ARG 2 italic_π end_ARG ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_n ) italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_x end_POSTSUPERSCRIPT .

Following [6], the control law (43) is equivalent to the following form:

uconv(x,t)=ππΓ(xξ)ψ(ξ,t)dξ2πsubscriptsuperscript𝑢conv𝑥𝑡superscriptsubscript𝜋𝜋Γ𝑥𝜉𝜓𝜉𝑡d𝜉2𝜋u^{*}_{\text{conv}}(x,t)=\int_{-\pi}^{\pi}\Gamma(x-\xi)\psi(\xi,t)\frac{%\mathop{}\!\mathrm{d}\xi}{2\pi}italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT start_POSTSUBSCRIPT conv end_POSTSUBSCRIPT ( italic_x , italic_t ) = ∫ start_POSTSUBSCRIPT - italic_π end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT roman_Γ ( italic_x - italic_ξ ) italic_ψ ( italic_ξ , italic_t ) divide start_ARG roman_d italic_ξ end_ARG start_ARG 2 italic_π end_ARG(44)

where ψ(ξ,t)𝜓𝜉𝑡\psi(\xi,t)italic_ψ ( italic_ξ , italic_t ) are solutions to the heat equation on [π,π]𝜋𝜋[-\pi,\pi][ - italic_π , italic_π ] with periodic boundary conditions, initial conditions ψ0(ξ)=ϕ0(ξ)subscript𝜓0𝜉subscriptitalic-ϕ0𝜉\psi_{0}(\xi)=\phi_{0}(\xi)italic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) = italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) if ξ(0,π)𝜉0𝜋\xi\in(0,\pi)italic_ξ ∈ ( 0 , italic_π ) and ψ0(ξ)=ϕ0(ξ),usubscript𝜓0𝜉subscriptitalic-ϕ0𝜉𝑢\psi_{0}(\xi)=-\phi_{0}(-\xi),uitalic_ψ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) = - italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_ξ ) , italic_u if ξ(π,0)𝜉𝜋0\xi\in(-\pi,0)italic_ξ ∈ ( - italic_π , 0 ), and the control v(ξ,t)=u(ξ,t)𝑣𝜉𝑡𝑢𝜉𝑡v(\xi,t)=u(\xi,t)italic_v ( italic_ξ , italic_t ) = italic_u ( italic_ξ , italic_t ) if ξ(0,π)𝜉0𝜋\xi\in(0,\pi)italic_ξ ∈ ( 0 , italic_π ) and v(ξ,t)=u(ξ,t)𝑣𝜉𝑡𝑢𝜉𝑡v(\xi,t)=-u(-\xi,t)italic_v ( italic_ξ , italic_t ) = - italic_u ( - italic_ξ , italic_t ) if ξ(π,0)𝜉𝜋0\xi\in(-\pi,0)italic_ξ ∈ ( - italic_π , 0 ).

We first rewrite the solution (28) in series representation.This mostly follows from [11, Section 4.2]. Here, we present the main steps.We start by noting that Δ(k)=eikπeikπ=2isin(kπ)Δ𝑘superscript𝑒𝑖𝑘𝜋superscript𝑒𝑖𝑘𝜋2𝑖𝑘𝜋\Delta(k)=e^{ik\pi}-e^{-ik\pi}=2i\sin(k\pi)roman_Δ ( italic_k ) = italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_π end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k italic_π end_POSTSUPERSCRIPT = 2 italic_i roman_sin ( italic_k italic_π ) has simple zeros at k=n,nformulae-sequence𝑘𝑛𝑛k=n,n\in\mathbb{Z}italic_k = italic_n , italic_n ∈ blackboard_Z.Then for the integral along 𝒟+superscript𝒟\partial\mathcal{D}^{+}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, using Lemma3 and Lemma4, we deform it back to the real line with small loops around these roots of radius ϵ0italic-ϵ0\epsilon\to 0italic_ϵ → 0 denoted by 𝒟ϵ+superscriptsubscript𝒟italic-ϵ\partial\mathcal{D}_{\epsilon}^{+}∂ caligraphic_D start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT, which is the boundary of 𝒟ϵ+superscriptsubscript𝒟italic-ϵ\mathcal{D}_{\epsilon}^{+}caligraphic_D start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT shown in Figure4.

Let f(x,t,k)𝑓𝑥𝑡𝑘f(x,t,k)italic_f ( italic_x , italic_t , italic_k ) denote the integrand for the integral along 𝒟+superscript𝒟\partial\mathcal{D}^{+}∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT in (28).In our case, the small loops around each root have an angular width β=π𝛽𝜋\beta=-\piitalic_β = - italic_π. Using Lemma5,the solution can be rewritten as

ϕ(x,t)italic-ϕ𝑥𝑡\displaystyle\phi(x,t)italic_ϕ ( italic_x , italic_t )=eikxω(k)tϕ^0(k)dk2π𝒟ϵ+f(x,t,k)dk2πabsentsuperscriptsubscriptsuperscript𝑒𝑖𝑘𝑥𝜔𝑘𝑡subscript^italic-ϕ0𝑘d𝑘2𝜋subscriptsubscriptsuperscript𝒟italic-ϵ𝑓𝑥𝑡𝑘d𝑘2𝜋\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,\hat{\phi}_{0}(k)%\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}-\int_{\partial\mathcal{D}^{+}_{\epsilon}}%f(x,t,k)\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG - ∫ start_POSTSUBSCRIPT ∂ caligraphic_D start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_ϵ end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f ( italic_x , italic_t , italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
=eikxω(k)tϕ^0(k)dk2πf(x,t,k)dk2π\displaystyle=\int_{-\infty}^{\infty}e^{ikx-\omega(k)t}\,\hat{\phi}_{0}(k)%\dfrac{\mathop{}\!\mathrm{d}k}{2\pi}-\mathchoice{{\vbox{\hbox{$\textstyle-$}}%\kern-4.86108pt}}{{\vbox{\hbox{$\scriptstyle-$}}\kern-3.25pt}}{{\vbox{\hbox{$%\scriptscriptstyle-$}}\kern-2.29166pt}}{{\vbox{\hbox{$\scriptscriptstyle-$}}%\kern-1.875pt}}\!\int_{-\infty}^{\infty}f(x,t,k)\dfrac{\mathop{}\!\mathrm{d}k}%{2\pi}= ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_k italic_x - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG - - ∫ start_POSTSUBSCRIPT - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_f ( italic_x , italic_t , italic_k ) divide start_ARG roman_d italic_k end_ARG start_ARG 2 italic_π end_ARG
+πi2πn=Residue[f(x,t,k)]k=n.𝜋𝑖2𝜋superscriptsubscript𝑛Residuesubscriptdelimited-[]𝑓𝑥𝑡𝑘𝑘𝑛\displaystyle\quad+\frac{\pi i}{2\pi}\sum_{n=-\infty}^{\infty}\text{Residue}[f%(x,t,k)]_{k=n}.+ divide start_ARG italic_π italic_i end_ARG start_ARG 2 italic_π end_ARG ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT Residue [ italic_f ( italic_x , italic_t , italic_k ) ] start_POSTSUBSCRIPT italic_k = italic_n end_POSTSUBSCRIPT .

We first evaluate the principle-value integral and show that it cancels out the first integral. Explicitly expressing f(x,t,k)𝑓𝑥𝑡𝑘f(x,t,k)italic_f ( italic_x , italic_t , italic_k ), we have

f(x,t,k)=eω(k)tΔ(k)[(eik(x+π)eik(xπ))ϕ^0(k)\displaystyle f(x,t,k)=\dfrac{e^{-\omega(k)t}}{\Delta(k)}\big{[}(e^{ik(x+\pi)}%-e^{-ik(x-\pi)})\hat{\phi}_{0}(k)italic_f ( italic_x , italic_t , italic_k ) = divide start_ARG italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_k ) italic_t end_POSTSUPERSCRIPT end_ARG start_ARG roman_Δ ( italic_k ) end_ARG [ ( italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_x + italic_π ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k ( italic_x - italic_π ) end_POSTSUPERSCRIPT ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_k )
+(eik(πx)eik(πx))ϕ^0(k)].\displaystyle\hskip 86.72377pt+(e^{ik(\pi-x)}-e^{-ik(\pi-x)})\hat{\phi}_{0}(-k%)\big{]}.+ ( italic_e start_POSTSUPERSCRIPT italic_i italic_k ( italic_π - italic_x ) end_POSTSUPERSCRIPT - italic_e start_POSTSUPERSCRIPT - italic_i italic_k ( italic_π - italic_x ) end_POSTSUPERSCRIPT ) over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k ) ] .

By rewriting the term with ϕ^0(k)subscript^italic-ϕ0𝑘\hat{\phi}_{0}(-k)over^ start_ARG italic_ϕ end_ARG start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( - italic_k ) into another integral and replacing k𝑘kitalic_k with k𝑘-k- italic_k, we have that the integrand in the principle-value integral is the same as the integrand in the first integral. The two integrals cancel out.

Now we evaluate the residue of f(x,t,k)𝑓𝑥𝑡𝑘f(x,t,k)italic_f ( italic_x , italic_t , italic_k ) at k=n𝑘𝑛k=nitalic_k = italic_n. Note that the function f(x,t,k)𝑓𝑥𝑡𝑘f(x,t,k)italic_f ( italic_x , italic_t , italic_k ) is the ratio of two other functions, f(x,t,k)=h(x,t,k)/Δ(k)𝑓𝑥𝑡𝑘𝑥𝑡𝑘Δ𝑘f(x,t,k)=h(x,t,k)/\Delta(k)italic_f ( italic_x , italic_t , italic_k ) = italic_h ( italic_x , italic_t , italic_k ) / roman_Δ ( italic_k ).Then, the residue of f(x,t,k)𝑓𝑥𝑡𝑘f(x,t,k)italic_f ( italic_x , italic_t , italic_k ) at k=n𝑘𝑛k=nitalic_k = italic_n is equal to h(x,t,n)𝑥𝑡𝑛h(x,t,n)italic_h ( italic_x , italic_t , italic_n ) divided by the derivative of Δ(k)Δ𝑘\Delta(k)roman_Δ ( italic_k ) at k=n𝑘𝑛k=nitalic_k = italic_n.After some operations, we have

ϕ(x,t)italic-ϕ𝑥𝑡\displaystyle\phi(x,t)italic_ϕ ( italic_x , italic_t )=iπn=einxω(n)t0πsin(nξ)ϕ0(ξ)dξabsent𝑖𝜋superscriptsubscript𝑛superscript𝑒𝑖𝑛𝑥𝜔𝑛𝑡superscriptsubscript0𝜋𝑛𝜉subscriptitalic-ϕ0𝜉differential-d𝜉\displaystyle=-\frac{i}{\pi}\sum_{n=-\infty}^{\infty}e^{inx-\omega(n)t}\int_{0%}^{\pi}\sin(n\xi)\phi_{0}(\xi)\mathop{}\!\mathrm{d}\xi= - divide start_ARG italic_i end_ARG start_ARG italic_π end_ARG ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_x - italic_ω ( italic_n ) italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT roman_sin ( italic_n italic_ξ ) italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ(45)
=2πn=1sin(nx)eω(n)t0πsin(nξ)ϕ0(ξ)dξ.absent2𝜋superscriptsubscript𝑛1𝑛𝑥superscript𝑒𝜔𝑛𝑡superscriptsubscript0𝜋𝑛𝜉subscriptitalic-ϕ0𝜉differential-d𝜉\displaystyle=\frac{2}{\pi}\sum_{n=1}^{\infty}\sin(nx)e^{-\omega(n)t}\int_{0}^%{\pi}\sin(n\xi)\phi_{0}(\xi)\mathop{}\!\mathrm{d}\xi.= divide start_ARG 2 end_ARG start_ARG italic_π end_ARG ∑ start_POSTSUBSCRIPT italic_n = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT roman_sin ( italic_n italic_x ) italic_e start_POSTSUPERSCRIPT - italic_ω ( italic_n ) italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT roman_sin ( italic_n italic_ξ ) italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ .

(45) is exactly the series expression of ψ(ξ,t)𝜓𝜉𝑡\psi(\xi,t)italic_ψ ( italic_ξ , italic_t ) for ξ(0,π)𝜉0𝜋\xi\in(0,\pi)italic_ξ ∈ ( 0 , italic_π ) after substituting (44) into the heat equation with hom*ogeneous periodic boundary conditions.

Repeat similar steps for (26), we have

u(x,t)superscript𝑢𝑥𝑡\displaystyle u^{*}(x,t)italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t )=iπn=p^(n)einxω(n)t0πsin(nξ)ϕ0(ξ)dξabsent𝑖𝜋superscriptsubscript𝑛^𝑝𝑛superscript𝑒𝑖𝑛𝑥𝜔𝑛𝑡superscriptsubscript0𝜋𝑛𝜉subscriptitalic-ϕ0𝜉differential-d𝜉\displaystyle=-\frac{i}{\pi}\sum_{n=-\infty}^{\infty}\hat{p}(n)e^{inx-\omega(n%)t}\int_{0}^{\pi}\sin(n\xi)\phi_{0}(\xi)\mathop{}\!\mathrm{d}\xi= - divide start_ARG italic_i end_ARG start_ARG italic_π end_ARG ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_n ) italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_x - italic_ω ( italic_n ) italic_t end_POSTSUPERSCRIPT ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_π end_POSTSUPERSCRIPT roman_sin ( italic_n italic_ξ ) italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_ξ ) roman_d italic_ξ(46)
=n=einxp^(n)ψ^(n,t),absentsuperscriptsubscript𝑛superscript𝑒𝑖𝑛𝑥^𝑝𝑛^𝜓𝑛𝑡\displaystyle=\sum_{n=-\infty}^{\infty}e^{inx}\hat{p}(n)\hat{\psi}(n,t),= ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_n italic_x end_POSTSUPERSCRIPT over^ start_ARG italic_p end_ARG ( italic_n ) over^ start_ARG italic_ψ end_ARG ( italic_n , italic_t ) ,

where ψ^(n,t)^𝜓𝑛𝑡\hat{\psi}(n,t)over^ start_ARG italic_ψ end_ARG ( italic_n , italic_t ) is the discrete Fourier transform of ψ(x,t)𝜓𝑥𝑡\psi(x,t)italic_ψ ( italic_x , italic_t ) in (45).By convolution theorem, u(x,t)superscript𝑢𝑥𝑡u^{*}(x,t)italic_u start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) in (46) is equivalent to uconv(x,t)superscriptsubscript𝑢conv𝑥𝑡u_{\text{conv}}^{*}(x,t)italic_u start_POSTSUBSCRIPT conv end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT ( italic_x , italic_t ) in (44).

VI-B Numerical advantages

While we have shown that the integral representation of the state (28) is equivalent to the series representation (45) for hom*ogeneous Dirichlet boundary conditions, the integral representation has numerical advantages.We use Mathematica to directly compute the state and control expressions to compare the numerical properties of the two representations.The initial condition ϕ0(x)=sin(x)subscriptitalic-ϕ0𝑥𝑥\phi_{0}(x)=\sin(x)italic_ϕ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) = roman_sin ( italic_x ) is used together with the hom*ogeneous Dirichlet boundary conditions.

Figure5 shows the numerical computation using the integral representations of the state (28) and the control (26).The infinite series (45) does not converge in the numerical solver, and thus the convolution form (43) cannot be computed without approximation.In contrast, the integral representations (26) and (28) converge in existing numerical integration solvers and can be computed very efficiently.Numerical advantages for complex integral representations have been discussed for general boundary conditions and other types of linear PDEs; see [10] and [15].

VII Conclusions

In this study, we derived the optimal control law for the linear quadratic regulator of the heat equation with general Neumann or Dirichlet boundary conditions using the Fokas method.The control law is given by an integral representation that depends only on the known initial and boundary values.In the special case of hom*ogeneous Dirichlet boundary conditions, we showed that the more general integral representation recovers an existing optimal control law in series representation.The resulting integral representation of the control is easy to compute, whereas the traditional series representation cannot be directly computed without approximation.

Future work includes transforming the integral representation of the optimal control into a feedback form to analyze potential distributed properties.Another direction is to generalize the procedures to derive the control law for other linear PDEs with other types of boundary conditions, such as Robin boundary conditions, where the Fokas method has proven successful.For applications, it is of interest to explore the control design for soft robotics where linear PDEs such as beam equations are used to model the dynamics of soft robots [16].

References

  • [1]B.Bamieh, F.Paganini, and M.A. Dahleh, “Distributed control of spatiallyinvariant systems,” IEEE Transactions on automatic control, vol.47,no.7, pp.1091–1107, 2002.
  • [2]R.D’Andrea and G.E. Dullerud, “Distributed control design for spatiallyinterconnected systems,” IEEE Transactions on automatic control,vol.48, no.9, pp.1478–1495, 2003.
  • [3]N.Motee and A.Jadbabaie, “Optimal control of spatially distributedsystems,” IEEE Transactions on Automatic Control, vol.53, no.7,pp.1616–1629, 2008.
  • [4]M.R. Jovanovic and B.Bamieh, “On the ill-posedness of certain vehicularplatoon control problems,” IEEE Transactions on Automatic Control,vol.50, no.9, pp.1307–1321, 2005.
  • [5]C.Langbort and R.D’Andrea, “Distributed control of spatially reversibleinterconnected systems with boundary conditions,” SIAM journal oncontrol and optimization, vol.44, no.1, pp.1–28, 2005.
  • [6]J.P. Epperlein and B.Bamieh, “Spatially invariant embeddings of systems withboundaries,” in 2016 American Control Conference (ACC),pp.6133–6139, IEEE, 2016.
  • [7]J.Arbelaiz, B.Bamieh, A.E. Hosoi, and A.Jadbabaie, “Optimal estimation inspatially distributed systems: how far to share measurements from?,” arXiv preprint arXiv:2406.14781, 2024.
  • [8]A.S. Fokas, “A unified transform method for solving linear and certainnonlinear pdes,” Proceedings of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences, vol.453, no.1962,pp.1411–1443, 1997.
  • [9]A.S. Fokas, A unified approach to boundary value problems.SIAM, 2008.
  • [10]A.Fokas and E.Kaxiras, Modern Mathematical Methods for Scientists andEngineers.WORLD SCIENTIFIC (EUROPE), 2023.
  • [11]B.Deconinck, T.Trogdon, and V.Vasan, “The method of fokas for solvinglinear partial differential equations,” SIAM Review, vol.56, no.1,pp.159–186, 2014.
  • [12]K.Kalimeris, T.Özsarl, and N.Dikaios, “Numerical computation of neumanncontrols for the heat equation on a finite interval,” IEEE Transactionson Automatic Control, 2023.
  • [13]B.D. Anderson and J.B. Moore, Optimal control: linear quadraticmethods.Courier Corporation, 2007.
  • [14]J.-W. Wang, H.-N. Wu, and C.-Y. Sun, “Boundary controller design andwell-posedness analysis of semi-linear parabolic pde systems,” in 2014American Control Conference, pp.3369–3374, IEEE, 2014.
  • [15]F.DeBarros, M.Colbrook, and A.Fokas, “A hybrid analytical-numerical methodfor solving advection-dispersion problems on a half-line,” International Journal of Heat and Mass Transfer, vol.139, pp.482–491,2019.
  • [16]C.DellaSantina, C.Duriez, and D.Rus, “Model-based control of soft robots:A survey of the state of the art and open challenges,” IEEE ControlSystems Magazine, vol.43, no.3, pp.30–65, 2023.
  • [17]M.J. Ablowitz and A.S. Fokas, Complex variables: introduction andapplications.Cambridge University Press, 2003.

Appendix

Here, we collect some results from complex analysis.

Lemma 3 (Cauchy’s Theorem [17, Theorem 2.5.2])

If a function f𝑓fitalic_f is analytic in a simply connected domain 𝒟𝒟\mathcal{D}caligraphic_D, then along a simple closed contour 𝒞𝒞\mathcal{C}caligraphic_C in 𝒟𝒟\mathcal{D}caligraphic_D

𝒞f(z)dz=0.subscriptcontour-integral𝒞𝑓𝑧differential-d𝑧0\oint_{\mathcal{C}}f(z)\mathop{}\!\mathrm{d}z=0.∮ start_POSTSUBSCRIPT caligraphic_C end_POSTSUBSCRIPT italic_f ( italic_z ) roman_d italic_z = 0 .
Lemma 4 (Jordan’s Lemma [17, Lemma 4.2.2])

Let 𝒞Rsubscript𝒞𝑅\mathcal{C}_{R}caligraphic_C start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT be a circular arc of radius R𝑅Ritalic_R centered at the origin and lying on the upper-half complex plane defined by z=Reiθ𝑧𝑅superscript𝑒𝑖𝜃z=Re^{i\theta}italic_z = italic_R italic_e start_POSTSUPERSCRIPT italic_i italic_θ end_POSTSUPERSCRIPT with 0θ1θθ2π0subscript𝜃1𝜃subscript𝜃2𝜋0\leq\theta_{1}\leq\theta\leq\theta_{2}\leq\pi0 ≤ italic_θ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≤ italic_θ ≤ italic_θ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≤ italic_π. Suppose that on the circular arc 𝒞Rsubscript𝒞𝑅\mathcal{C}_{R}caligraphic_C start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT, we have f(z)0𝑓𝑧0f(z)\to 0italic_f ( italic_z ) → 0 uniformly as R𝑅R\to\inftyitalic_R → ∞. Then

limR𝒞Reiλzf(z)dz=0,subscript𝑅subscriptsubscript𝒞𝑅superscript𝑒𝑖𝜆𝑧𝑓𝑧differential-d𝑧0\lim_{R\to\infty}\int_{\mathcal{C}_{R}}e^{i\lambda z}f(z)\mathop{}\!\mathrm{d}%z=0,roman_lim start_POSTSUBSCRIPT italic_R → ∞ end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_e start_POSTSUPERSCRIPT italic_i italic_λ italic_z end_POSTSUPERSCRIPT italic_f ( italic_z ) roman_d italic_z = 0 ,

where λ𝜆\lambdaitalic_λ is a real, positive constant.

Remark 4

If λ𝜆\lambdaitalic_λ is real and negative, then Jordan’s lemma is still valid, provided that 𝒞Rsubscript𝒞𝑅\mathcal{C}_{R}caligraphic_C start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT is defined on the lower-half complex plane.

Lemma 5 (​[17, Theorem 4.3.1])

Consider a function f(z)𝑓𝑧f(z)italic_f ( italic_z ) analytic in an annulus centered at z0subscript𝑧0z_{0}italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Let 𝒞ϵ,β[z0]subscript𝒞italic-ϵ𝛽delimited-[]subscript𝑧0\mathcal{C}_{\epsilon,\beta[z_{0}]}caligraphic_C start_POSTSUBSCRIPT italic_ϵ , italic_β [ italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT be a circular arc of radius ϵitalic-ϵ\epsilonitalic_ϵ and angular width β𝛽\betaitalic_β, which lies entirely within the annulus centered at z0:z=z0+ϵeiα:subscript𝑧0𝑧subscript𝑧0italic-ϵsuperscript𝑒𝑖𝛼z_{0}:z=z_{0}+\epsilon e^{i\alpha}italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT : italic_z = italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_ϵ italic_e start_POSTSUPERSCRIPT italic_i italic_α end_POSTSUPERSCRIPT, with α0αα0+βsubscript𝛼0𝛼subscript𝛼0𝛽\alpha_{0}\leq\alpha\leq\alpha_{0}+\betaitalic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ≤ italic_α ≤ italic_α start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT + italic_β.Suppose f(z)𝑓𝑧f(z)italic_f ( italic_z ) has a simple pole at z0subscript𝑧0z_{0}italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT. Then

limϵ0𝒞ϵ,β[z0]f(z)dz=iβResidue[f(z)]z=z0,subscriptitalic-ϵ0subscriptsubscript𝒞italic-ϵ𝛽delimited-[]subscript𝑧0𝑓𝑧differential-d𝑧𝑖𝛽Residuesubscriptdelimited-[]𝑓𝑧𝑧subscript𝑧0\lim_{\epsilon\to 0}\int_{\mathcal{C}_{\epsilon,\beta[z_{0}]}}f(z)\mathop{}\!%\mathrm{d}z=i\beta\ \text{Residue}\left[f(z)\right]_{z=z_{0}},roman_lim start_POSTSUBSCRIPT italic_ϵ → 0 end_POSTSUBSCRIPT ∫ start_POSTSUBSCRIPT caligraphic_C start_POSTSUBSCRIPT italic_ϵ , italic_β [ italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ] end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_f ( italic_z ) roman_d italic_z = italic_i italic_β Residue [ italic_f ( italic_z ) ] start_POSTSUBSCRIPT italic_z = italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,

where Residue[f(z)]z=z0Residuesubscriptdelimited-[]𝑓𝑧𝑧subscript𝑧0\text{Residue}\left[f(z)\right]_{z=z_{0}}Residue [ italic_f ( italic_z ) ] start_POSTSUBSCRIPT italic_z = italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is defined as the value of the coefficient C1subscript𝐶1C_{-1}italic_C start_POSTSUBSCRIPT - 1 end_POSTSUBSCRIPT in the Laurent expansion of the function f(z)=n=Cn(zz0)n𝑓𝑧superscriptsubscript𝑛subscript𝐶𝑛superscript𝑧subscript𝑧0𝑛f(z)=\sum_{n=-\infty}^{\infty}C_{n}(z-z_{0})^{n}italic_f ( italic_z ) = ∑ start_POSTSUBSCRIPT italic_n = - ∞ end_POSTSUBSCRIPT start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT italic_C start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_z - italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT around the point z0subscript𝑧0z_{0}italic_z start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT.

On linear quadratic regulator for the heat equation with general boundary conditions (2024)
Top Articles
Best third-party delivery in Los Angeles | Grubhub for Restaurants
Paying With Cash on Grubhub: A Comprehensive Guide for Savvy Shoppers - Marketing Scoop
Funny Roblox Id Codes 2023
Golden Abyss - Chapter 5 - Lunar_Angel
Www.paystubportal.com/7-11 Login
Joi Databas
DPhil Research - List of thesis titles
Shs Games 1V1 Lol
Evil Dead Rise Showtimes Near Massena Movieplex
Steamy Afternoon With Handsome Fernando
fltimes.com | Finger Lakes Times
Detroit Lions 50 50
18443168434
Newgate Honda
Zürich Stadion Letzigrund detailed interactive seating plan with seat & row numbers | Sitzplan Saalplan with Sitzplatz & Reihen Nummerierung
Grace Caroline Deepfake
978-0137606801
Nwi Arrests Lake County
Justified Official Series Trailer
Craigslist Free Stuff Santa Cruz
Mflwer
Spergo Net Worth 2022
Costco Gas Foster City
Obsidian Guard's Cutlass
Marvon McCray Update: Did He Pass Away Or Is He Still Alive?
Mccain Agportal
Amih Stocktwits
Fort Mccoy Fire Map
Uta Kinesiology Advising
Kcwi Tv Schedule
What Time Does Walmart Auto Center Open
Nesb Routing Number
Olivia Maeday
Random Bibleizer
10 Best Places to Go and Things to Know for a Trip to the Hickory M...
Black Lion Backpack And Glider Voucher
Gopher Carts Pensacola Beach
Duke University Transcript Request
Lincoln Financial Field, section 110, row 4, home of Philadelphia Eagles, Temple Owls, page 1
Jambus - Definition, Beispiele, Merkmale, Wirkung
Ark Unlock All Skins Command
Craigslist Red Wing Mn
D3 Boards
Jail View Sumter
Nancy Pazelt Obituary
Birmingham City Schools Clever Login
Thotsbook Com
Funkin' on the Heights
Vci Classified Paducah
Www Pig11 Net
Ty Glass Sentenced
Latest Posts
Article information

Author: Kieth Sipes

Last Updated:

Views: 6299

Rating: 4.7 / 5 (47 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Kieth Sipes

Birthday: 2001-04-14

Address: Suite 492 62479 Champlin Loop, South Catrice, MS 57271

Phone: +9663362133320

Job: District Sales Analyst

Hobby: Digital arts, Dance, Ghost hunting, Worldbuilding, Kayaking, Table tennis, 3D printing

Introduction: My name is Kieth Sipes, I am a zany, rich, courageous, powerful, faithful, jolly, excited person who loves writing and wants to share my knowledge and understanding with you.